Expanded Site Inspection Report

7125/14

AMCA International Corp.
(a.k.a. Continental-Midland, Inc.)
Park Forest, Illinois

U.S. Environmental Protection Agency ILD 051 069 854

July 25, 1994

EPA Region 5 Records Ctr.

Black & Veatch Waste Science, Inc. 101 North Wacker Drive Suite 1100 Chicago, Illinois 60606

J 6363

Contents

1.0	Intro	oduction	1-1
2.0	Site	Background	2-1
	2.1		
	2.2	Site Description	2-1
	2.3	-	
		2.3.1 Operational History	
		2.3.2 Summary of Onsite Environmental Work	
	2.4	Applicability of Other Statutes	
3.0	Site	Inspection Activities and Analytical Results	3-1
	3.1		
	3.2	Site Reconnaissance	3-1
	3.3	Site Representative Interview	3-1
	3.4	Monitoring Well Installation	3-5
	3.5	Groundwater Sampling	3-7
	3.6	Sediment Sampling	3-8
	3.7	Analytical Results	3-8
	3.8	Key Samples	3-9
4.0	Cha	racterization of Sources	4-1
	4.1	Introduction	4-1
	4.2	Waste Source: Contaminated Soil	4-1
		4.2.1 Description	4-1
		4.2.2 Waste Characteristics	4-1
5.0	Disc	ussion of Migration Pathways	5-1
	5.1		5-1
	5.2	Groundwater	5-1
	5.3		5-2
	5.4		5-4
	5.5	Δir	5-5

Contents (Continued)

6.0 Refe	rences 6-1
	Tables
Table 3-1	Sample Descriptions
Table 3-2	Key Sample Summary
Table 5-1	Municipal Water Supply Sources Within Four Miles of Site 5-3
Table 5-2	Private Well Users Within Four Miles of Site 5-3
	Figures
Figure 2-1	Site Location Map
Figure 2-2	Site Sketch
Figure 3-1	Sample Locations
	Appendices
Appendix A	A 15-Mile Surface Water Route Map
Appendix I	B Target Compound List and Target Analyte List
Appendix (C Analytical Results
Appendix I	Site Photographs
Appendix I	Boring and Well Installation Logs

1.0 Introduction

On May 21, 1992, Black & Veatch Waste Science, Inc. was authorized by the U.S. Environmental Protection Agency (USEPA) Region V to conduct an expanded site inspection (ESI) of the AMCA International Corporation (AMCA) site in Park Forest, Will County, Illinois. The site is also referred to as Continental-Midland, Inc.

The site initially was placed on the Comprehensive Environmental Response, Compensation, and Liability Act Information System (CERCLIS) on February 1, 1984, as a result of a request for discovery action initiated by the Illinois Environmental Protection Agency (IEPA).

The facility received its initial Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation in the form of a preliminary assessment (PA) report completed by Bonnie Eleder, IEPA, on March 15, 1984. The sampling portion of the ESI was conducted from August 30, 1993, to September 2, 1993, when a field team collected four sediment samples, five groundwater samples from neighboring residential wells, and three groundwater samples from newly installed onsite monitoring wells.

The purposes of the ESI have been stated by USEPA in a directive outlining site inspections performed under CERCLA. The directive states:

The objective of the expanded site inspection (SI) is to provide documentation for the Hazard Ranking System (HRS) package to support National Priorities List (NPL) rulemaking. Remaining HRS information requirements are addressed and site hypotheses not completely supported during previous investigations are evaluated. Expanded SI sampling is designed to satisfy HRS data requirements by documenting observed releases, observed contamination, and levels of actual contamination at targets. In addition, investigators collect remaining non-sampling information. Sampling during the expanded SI includes background and quality assurance/quality control samples to fully document releases and attribute them to the site. Following the expanded SI, USEPA site assessment managers assign the site a priority for HRS package preparation and proposal to the NPL.

USEPA Region V requested that the ARCS V contractor identify sites during the ESI that may require removal action to remediate an immediate human health or environmental threat.

2.0 Site Background

2.1 Introduction

This section includes information obtained from the ESI and previous site activity reports.

2.2 Site Description

AMCA is located in a rural/suburban setting at 25000 South Western Avenue, Park Forest, Will County, Illinois. The site occupies about 85 acres in Sections 11 and 12 of Township 34 North, Range 13 East. Scattered residences and residential subdivisions are located within one mile of the site. Figure 2-1 is a site location map. Figure 2-2 is a site sketch.

Several buildings and a parking lot occupy about 12 acres of the site. The buildings are surrounded by a fence. Manufacturing activities take place inside the fence. The remaining 73 acres of the site are heavily wooded and unfenced. The Thorn Creek Forest Preserve is adjacent to the northern and western site boundaries. To the south and east are residential neighborhoods with some commercial and light industry settings. A parking lot entrance, located near the southeastern corner of the site, allows entry from Western Avenue. A unmanned guard shack is located at the entrance of the fenced area. A dirt road, located onsite north of the manufacturing buildings, leads west from Western Avenue to an abandoned dilapidated residence. A concrete foundation slab is located approximately 100 yards west of the manufacturing area. At one time, the facility operated an Imhoff tank and sludge drying beds; the inactive system is located near the western property line.

The site topography is generally flat; however, a marsh exists onsite just north of the manufacturing buildings. Site runoff flows northward from the paved area of the parking lot and around the buildings into the marsh. AMCA has a National Pollutant Discharge Elimination System permit that allows site runoff to flow into the eastern edge of the marsh. The marsh drains northward into an unnamed creek, which empties into Thorn Creek. Thorn Creek eventually flows into the Little Calumet River. Appendix A contains the 15-mile downstream surface water pathway.

2.3 Site History

This section presents information pertaining to the operational history of the site and the history of onsite environmental work.

Source: USGS Topographic Map, Steger Quadrangle

N Figure 2-1
Site Location Map

AMCA International
(a.k.a.Continental Midland, Inc.)

Not to scale

2.3.1 Operational History

AMCA is an active facility that manufactures power-actuated tools, gas and electric chain saws, fasteners, and cement finishing equipment. The plant buildings and approximately twelve acres in the southeastern part of the site are leased from the site owner, United Dominion Corporation, formerly AMCA International. All manufacturing processes now take place on these 12 acres.

Mall Tool Company began operations in 1946 or 1947. Remington Arms purchased the property in 1959 and continued operations until 1969, when DESA Industries bought the property. In 1975, AMCA International purchased DESA Industries. In the mid-1980s, the name, DESA Industries, was changed to Continental-Midland, Inc.

Today, facility operations are similar to those conducted by the Mall Tool Company; however, some processes have been simplified and others have been eliminated or sold.

Continental-Midland, Inc., stored solid waste in dumpsters and drummed waste oil in a quonset hut. Drum storage areas are located southwest and west of the main manufacturing building. Two burn areas are west of the main building. Sludge drying beds for Imhoff tank discharges are near the northwestern site corner.

2.3.2 Summary of Onsite Environmental Work

The IEPA sampled surface and subsurface soils in 1983 after receiving an anonymous complaint alleging illegal dumpling of hazardous wastes. Polychlorinated biphenyls (PCBs) were detected at levels up to 2,600 parts per million. The IEPA requested that PCB-contaminated soils be remediated. However, a site owner representative stated that cleanup never occurred because the samples found to contain PCBs were random, the result of machine shop spills, not past site disposal operations.

In 1986, DESA Industries hired Environmental Resources Management (ERM), to conduct a remedial investigation. Surface soil samples were collected in potentially contaminated areas. Analytical results indicated the presence of inorganic, PCB, and volatile organic contaminants. Analysis of surface water and sediment samples indicated low levels of contaminants. Groundwater samples were collected from five onsite monitoring wells installed in the glacial drift. Analytical results indicated the presence of PCBs in only one well during one sampling event.

In June 1990, Ecology and Environment, Inc., (E&E) conducted a screening site inspection (SSI) and sampled soil from seven onsite borings. The soil sample analysis indicated the presence of volatile and semi-volatile organic compounds, pesticides, PCBs, and several inorganic analytes. Groundwater samples from the monitoring wells indicated the presence of semi-volatile organic compounds and inorganic analytes. The SSI results indicated that soils, sediments, surface water, and groundwater are areas of concern. Contaminated soils resulted from waste storage and disposal practices. Contaminants in surface water runoff flow into the manmade ditch northwest of the main manufacturing building and then into the marsh. The unnamed stream drains the marsh.

The IEPA instructed DESA Industries to clean up PCBs at the site to zero parts per million, but DESA refused. The matter was passed to the Illinois Attorney General's office; it is unresolved at this point.

2.4 Applicability of Other Statutes

The IEPA assigned AMCA a high priority after the preliminary assessment. The May 23, 1991, SSI report assigned the site a high priority for further investigation (E&E 1991).

AMCA was listed in the Resource Conservation and Recovery Information System (RCRIS) and CERCLIS databases. In the July 24, 1992, RCRIS, the site is listed as DESA Industries, a non-permitted, small quantity generator.

Information collected during the September 24, 1992, ESI site reconnaissance visit indicated the IEPA sued AMCA under the Toxic Substances Control Act.

3.0 Site Inspection Activities and Analytical Results

3.1 Introduction

This section outlines procedures used and observations made during the ESI conducted at the AMCA site. Sampling activities were conducted in accordance with the September 27, 1991, Quality Assurance Project Plan (QAPjP). Figure 3-1 shows the sample locations; Table 3-1 summarizes sample descriptions and locations.

ESI samples were analyzed by USEPA Contract Laboratory Program (CLP) participant laboratories for organic and inorganic substances contained on the USEPA Target Compound List (TCL) and Target Analyte List (TAL). Appendix B presents the TCL and TAL. Appendix C presents ESI sampling analytical data. Appendix D contains photographs of the site and sample locations. Appendix E contains the boring and well installation logs from the subsurface investigation.

3.2 Site Reconnaissance

On September 24, 1992, the ARCS V contractor conducted a reconnaissance of the AMCA site. The visit included a visual site inspection to determine the site's status, facility activities, health or safety hazards, and potential sampling locations.

The reconnaissance began with a discussion of the purpose of the visit with the site owner representatives. A site tour was conducted and the existing well locations and site layout were noted. Potential well and sampling locations were identified; hospital and emergency contacts were obtained. The weather was clear, about 60F, with winds out of the south at 5 to 15 miles-per-hour.

3.3 Site Representative Interview

The site reconnaissance began with an interview with AMCA representatives, including Mr. Joseph Wirtes, Director of Assembly Operations, representing the site operator, Continental-Midland, Inc.; Mr. Thomas Hoban, attorney, representing the site owner, DESA Industries; and Ms. Joyce Linck, Delta Environmental, the environmental consultant for DESA.

Continental-Midland operates a powder actuated tool manufacturing plant onsite. The plant buildings and about twelve acres are leased by Continental-Midland from site owner, United Dominion Corporation, formerly AMCA International. Onsite operations began in 1946 or 1947 by the Mall Tool Company. Remington Arms purchased the property and continued operations until 1969, when DESA

Source: ERM Remedial Investigation, 1986

N

Figure 3-1
Sample Locations
AMCA International
(A.K.A. Continental Midland, Inc.)

			ole 3-1 Descriptions
Sample	Depth (ft.)	Appearance	Location
GW01	124-134'	Clear	MW-9, north of manufacturing area near abandoned residence.
GW02	120-130'	Clear	MW-8, northeast of main manufacturing building and just north of parking lot on Western Avenue.
GW03	126-136'	Clear	MW-7, southwest of manufacturing area, just beyond fence.
RW01	exact depth unknown	Clear	Onsite drinking water well.
RW02	280'	Clear	Residential well located approximately 900 feet directly south of the property.
RW03	450'	Clear	Residential well located approximately 300 feet east of the property.
RW04	460'	Clear	Residential well located approximately 900 feet east of the property.
RW05	exact depth unknown	Clear	Residential well located approximately 1,200 feet northeast of the property.
ST01	0-6"	Light brown, gritty	In ditch draining parking lot west of facility buildings and inside fence.
ST02	0-6"	Brown with plant material	In bed of stream exiting wetland north of site and north of parking lot.
ST03	0-6"	Dark brown, clayey, with plant material	1,000 feet north of site in bed of stream exiting site, west of Western Avenue.
ST04	0-6"	Dark brown, gritty, with plant material	In bed of stream exiting site, 300 feet south of site, on eastern side of Western Avenue.

Industries purchased the property. In 1975, AMCA International purchased DESA Industries. In the mid-1980s, DESA Industries changed its name to Continental-Midland, Inc.

The site is located at 25000 South Western Avenue, Park Forest, Illinois. The site occupies 85 acres in a rural/residential area. Scattered residences and residential subdivisions are located within one mile of the site. A forest preserve is adjacent to the northwestern site border. Site topography is flat in most areas. North of the facility buildings is a low-lying marshy area and an unnamed creek that drains northward into Thorn Creek.

Access to the property is gained from Western Avenue. A parking lot entrance is near the southeastern site corner. A guard shack at the entrance was not manned during the reconnaissance. The twelve acres that comprise the manufacturing buildings and parking lot are surrounded by a chainlink fence. All manufacturing activities have occurred inside the fenced area. A dirt road from Western Avenue enters the property north of the manufacturing buildings and leads to an abandoned dilapidated residence. The plant manager placed a large tree across it to prevent vehicular access by trespassers. Apparently trespassers also enter the property, sometimes unknowingly, from the forest preserve.

The plant operates two bedrock wells onsite, including a drinking well and a well for fire protection.

IEPA sampled surface and subsurface soils in 1983 after receiving an anonymous complaint alleging illegal dumping of hazardous wastes. PCBs were detected at levels up to 2,600 parts per million. IEPA requested the PCB-contaminated soils be remediated. The site representative stated the areas of PCB-contaminated soil were random due to machine shop spills; therefore, the site owner did not submit to the cleanup request.

DESA Industries hired ERM to conduct a remedial investigation in 1986. Analysis of shallow soil samples collected on a grid in potentially contaminated areas did not indicate the presence of inorganic analytes or PCBs. Surface water sample analysis indicated low levels of hazardous substances. Five onsite shallow glacial drift monitoring wells were installed and sampled; however, the analysis indicated PCBs were present in one monitoring well during one sampling event. Table 1.5 from the remedial investigation report listed manufacturing processes and associated possible contaminants, several of which are CERCLA-regulated substances (40 CFR 302.4).

3.4 Monitoring Well Installation

Three bedrock monitoring wells were installed onsite during ESI field activities. Figure 3-1 shows the monitoring well locations. Soil boring advancement, rock drilling and coring, and monitoring well installations were performed by a three man drilling crew from Fox Drilling Company using a Central Mining Equipment 75 drill rig.

Drilling began on August 8, 1993. A 10-1/4 inch outside diameter (OD) hollow stem auger was used to advance a soil boring at each location. Split spoon soil samples were collected every five feet, starting at five feet below grade, until bedrock was encountered. A geologist classified and logged the soil. Appendix E contains the boring and well installation logs.

Temporary 8-inch nominal diameter flush-threaded steel casing was installed to approximately fifty feet in each borehole. The steel casing was used to prevent contaminant migration from potentially contaminated shallow glacial till water-bearing units to the bedrock aquifer. The steel casing was set within a low-permeability unit such as clay or silt. Drilling continued using a 7-7/8 inch rotary bit, with potable water as a drilling fluid, until circulation loss deterred borehole advancement. The drilling fluid was altered with bentonite powder to increase its viscosity and to prevent the loss of drilling fluid. Rotary drilling continued until bedrock was encountered.

Permanent casing was set in each boring from the surface to bedrock with 4-inch inside diameter (ID) schedule 80 polyvinyl chloride (PVC) casing. The casing was set one foot into the bedrock and grouted into place to isolate the glacial till overburden from the bedrock. The overburden was sealed from the deeper bedrock because past sampling data collected from the shallow monitoring wells indicated the presence of organic compounds. After the casing was set into the bedrock, the boring was continued with 2 inch ID double core barrel, using potable water as a drilling fluid. Each boring was advanced a sufficient depth into the bedrock to assure a representative groundwater sample from the aquifer. The borehole was reamed with a 3-7/8 inch OD tricone bit, using potable water as a drilling fluid.

A monitoring well was installed in each boring using a ten foot, two-inch ID National Sanitation Foundation (NSF) certified schedule 40 PVC screen with 0.010-inch slots. The screen of each monitoring well was placed below the top of the bedrock aquifer. Two-inch NSF certified schedule 40 PVC riser pipes were installed to approximately three feet above ground surface. The well annulus was filled with a sand filter pack, a high solids bentonite slurry seal, and cement-bentonite grout.

Locking steel protective covers and guard posts were cemented into place. To develop each well, a two-inch OD submersible pump removed a minimum of five volumes of water or pumped the well until it was dry.

Monitoring well MW-7 was located outside the southern property fence. Bedrock was encountered in the MW-7 borehole at 122 feet below grade. The well was pumped dry during development. The screened interval for MW-7 was placed from 126 feet to 136 feet below ground surface.

Monitoring well MW-8 was located just north of the parking lot and east of the main manufacturing building, about 300 feet west of Western Avenue. The first boring drilled at the location was abandoned and sealed to prevent potential cross contamination of lower layers after drilling through a confining layer. A second borehole was drilled 5 feet from the first borehole. The new borehole contains MW-8. Bedrock was encountered in the MW-8 borehole at 115 feet below grade. The well was pumped dry during development. The screened interval for MW-8 is from 120 feet to 130 feet below ground surface.

Monitoring well MW-9 was located north of the site near an abandoned dilapidated residence. The first boring drilled at the location was abandoned and sealed to prevent potential cross contamination of lower layers after drilling through a confining layer. A second borehole was drilled 12 feet south of the first borehole. The new borehole contains MW-9. Bedrock was encountered in the MW-9 borehole at 117.5 feet below grade. Approximately 55 gallons of water were pumped from the well during development. The screened interval for MW-9 is 124 to 134 feet below ground surface.

The relative elevations of the monitoring wells were surveyed on December 29, 1993. A notch to mark the elevation point was placed on the top of the riser of each monitoring well. An elevation of 400.00 feet was assumed for the top of the riser of MW-9. The relative elevation of MW-7 was 402.41 feet; the relative elevation of MW-8 was 393.31 feet.

The groundwater flow direction of the bedrock aquifer was determined using the relative elevations of the three wells. The flow direction is northeast; therefore, MW-7 is the upgradient background well.

Slug test data were collected on December 29, 1993, from monitoring wells using an In-Situ Hermit SE1000B datalogger. The data were used to calculate the hydraulic conductivity of the aquifer. The calculations were performed manually to solve the Hvorslev equation for a falling-head piezometer test. The average hydraulic

conductivity of MW-7 was 2.10×10^{-3} centimeters per second. The average hydraulic conductivity of MW-8 was 1.39×10^{-3} centimeters per second. The average hydraulic conductivity of MW-9 was 9.16×10^{-4} centimeters per second.

3.5 Groundwater Sampling

On September 2, 1993, the ESI field sampling team collected groundwater samples from the bedrock monitoring wells, MW-7, MW-8, and MW-9. AMCA representatives elected to split the samples collected by the field team. Figure 3-1 presents sample locations; Table 3-1 summarizes sample locations and descriptions. MW-8 and MW-9 were purged and sampled using a Keck® pump. MW-7 was purged with a hand pump and sampled with a disposable bailer because well access was blocked by a fence that prevented the use of the pump. Sample jars were sealed, labelled, packaged, and transported to USEPA CLP participant laboratories in accordance with the QAPjP. Reusable sampling and personal protective equipment (PPE) were decontaminated before transport offsite. Disposable sampling and PPE items were decontaminated and discarded in accordance with the ESI work plan and QAPjP.

Groundwater samples scheduled for organic analysis were shipped to Industrial Environmental Analysts in Monroe, Connecticut, on September 2, 1993. Groundwater samples scheduled for inorganic analysis were shipped to American Analytical and Technical Services, Inc., in Baton Rouge, Louisiana, on September 2, 1993. Samples were analyzed for TCL and TAL substances under a routine analytical services request.

Water from five residential wells was sampled on August 31, 1993. Water was permitted to run for at least ten minutes to purge the wells and to ensure representative samples. AMCA representatives elected to split sample RW01, which was taken from the onsite drinking water well. Figure 3-1 presents sample locations; Table 3-1 summarizes sample locations and descriptions. Sample jars were sealed, labelled, packaged, and transported to USEPA CLP participant laboratories in accordance with the QAPjP.

Recra Environmental, Inc., in Tonawanda, New York, on September 1, 1993. Residential well water samples scheduled for inorganic analysis were shipped to ETS Analytical Services in Roanoke, Virginia, on September 1, 1993. Samples were analyzed for TCL and TAL substances under a special analytical services request.

3.6 Sediment Sampling

On August 30, 1993, the ESI field team collected one offsite and three onsite sediment samples. AMCA representatives split the onsite samples collected by the field team. Each sample was collected with a clean, stainless steel spoon and placed in a clean sample jar. Figure 3-1 shows each sample location; Table 3-1 summarizes sample locations and descriptions. Sample jars were sealed, labeled, packaged, and transported to USEPA CLP participant laboratories in accordance with procedures set forth in the QAPjP.

Sediment samples scheduled for organic analysis were shipped to Industrial Environmental Analysts in Monroe, Connecticut, on August 30, 1993. Sediment samples scheduled for inorganic analysis were shipped to American Analytical and Technical Services, Inc., in Baton Rouge, Louisiana, on August 30, 1993. Samples were analyzed for TCL and TAL substances under a routine analytical services request. Reusable sampling and PPE were decontaminated before transport offsite. Disposable sampling and PPE items were discarded in accordance with procedures outlined in the ESI site-specific implementation plan and the QAPjP.

Sediment sample ST01 was collected from the drainage ditch that drains the parking lot west of the manufacturing buildings. The sample was collected just inside the fence. ST02 was collected from the bank of the stream exiting the wetland north of the facility buildings and just off the dirt road north of the parking lot. ST03 was collected approximately 1,000 feet north of the manufacturing buildings in the bank of the same stream where ST02 was collected. The sample location was the western side of the stream as it crosses under Western Avenue. ST04 was collected about 300 feet south of the site, in a culvert passing under Western Avenue. Sediment sample locations were chosen to determine offsite migration of potential contaminants to the surface water pathway.

3.7 Analytical Results

This section summarizes analytical results from ESI samples. Appendix C presents ESI analytical data. Analysis of the five residential well samples indicates the presence of nine inorganic compounds. Analysis of the three bedrock monitoring well samples indicates that no organic compounds and two inorganic compounds were present in the groundwater. Laboratory analysis of the four sediment samples indicates that six organic compounds and three inorganic compounds were present.

3.8 Key Samples

Key samples are those samples that contain substances in sufficient concentration to document an observed release. Table 3-2 identifies ESI key samples.

II	ole 3-2 ole Summary	
Groundy	vater (µg/L)	
	Sample	Number
Substance	GW02	GW03 Background
Cadmium	4.8 B	4.0 U
Chromium	8.0 B	7.0 U
Iron	733	109

		Residential W	ell (µg/L)		
		Sai	mple Number		
Substance	RW01	RW02 Background	RW03	RW04	RW05
Barium	33.4	1.7 B	82.4	81.2	69.1
Calcium	133000	1450	139000	183000	187000
Copper		5.2 UB		201 J	
Iron	449 J	43.4 UB	257 J	11100 J	3590 J
Lead		1.0 U		1.6 B	
Magnesium	72300	2180	70400	94200	98100
Manganese	4.9 B	2.0 U	3.0 B	74.3	40.7
Potassium	7000	2240		6720	
Selenium		2.0 UJ+		2.2 S	

		(Continued) ole Summary		
	Sedimer	nts (mg/kg)		
	Sample Number			
Substance	ST01	ST02	ST03	ST04 Background
Acetone			0.270 B	0.028 UB
2-Butanone			0.061	0.015 U
Toluene			0.031 B	0.003 UJB
Alpha-chlordane			0.940 PD	0.0052 P
Gamma-chlordane			0.160	0.0029 P
Aroclor-1248		0.280	47.000 PD	0.052 U
Cadmium			33.3	1.7
Chromium			823	61.9
Lead	28.6	38.0 S*	67.4 J+	20.0 US

GW	Groundwater sample.
RW	Residential well sample.
ST	Sediment sample.
B (inorganics)	Reported value is less than the contract required detection limit, but greater
, , ,	than or equal to the instrument detection limit.
B (organics)	Analyte found in the associated blank and in the sample, indicating
, , ,	possible/probable blank contamination. This flag must be used for a TIC as
	well as for a positively identified TCL compound.
J	Reported value was estimated.
S	The reported value was determined by the Method of Standard Additions
	(MSA).
U	Substance is undetected. The reported value is the contract required
	quantitation limit.
P	Pesticide Aroclor target analyte when there is greater than 25 percent
	difference for detected concentrations between the two GC columns. The
	lower of the two values is reported and flagged with a "P".
D	Compounds identified in an analysis at a secondary dilution factor.
+	Correlation coefficient for the MSA of less than 0.995.
*	Duplicate analysis was not within control limits.

4.0 Characterization of Sources

4.1 Introduction

ESI historical data research and sample analytical results indicate one source at AMCA International: contaminated soil.

4.2 Waste Source: Contaminated Soil

4.2.1 Description

The site owner, DESA Industries, contracted ERM to perform a site remedial investigation in 1986. Soil samples were collected from several onsite disposal areas to determine if these sources had impacted site soil. A limited analytical program was conducted based on the historical use of possible wastes and contaminants at the facility. The remedial investigation report summarized the possible contaminants used at the site, including acid/caustics and plating solutions, alloy metals, cyanide, trichloroethylene and other degreasing solvents, cutting and quenching oils, and diecasting hydraulic oils.

During the ERM investigation, several onsite disposal areas were studied, including the sludge drying beds and Imhoff tank, a small burn area northeast of the Imhoff tank, a drum storage area east of the concrete pad, a large burn area adjacent to the western manufacturing area fence, a rubble area near the rear fence gate, a second drum storage area near the southwestern corner of the fenced manufacturing area, and an area adjacent to the north of the large burn area described above. Composited soil samples were collected from these disposal areas and compared to composited background soil samples collected near the western site border.

4.2.2 Waste Characteristics

Several rounds of soil sampling has been performed at the site. In 1986, ERM conducted a remedial investigation for the site. Results of the 1986 ERM samples collected at the sludge drying beds indicated no significant concentrations of hazardous substances. The small burn area results showed Aroclor-1254 [0.2 parts per million (ppm)] and trichloroethylene [29 parts per billion (ppb)]. Analysis of the drum storage composite samples indicated the presence of Aroclor-1248 (0.2 ppm), ethylbenzene (420 ppb), and toluene (3,500 ppb). Results of samples collected from the large burn area showed elevated amounts of barium (220 ppm), cadmium (7.3 ppm), chromium (110 ppm), copper (190 ppm), lead (1,600 ppm), manganese (1,500

ppm), molybdenum (15 ppm), zinc (320 ppm), Aroclor-1248 (130 ppm), tetrachloroethylene (39 ppb), 1,2-trans-dichloroethylene (200 ppb), and trichloroethylene (34 ppb). Analysis of samples collected from the rubble area near the rear fence indicated Aroclor-1248 (17 ppm), tetrachloroethylene (7 ppb), 1,2-trans-dichloroethylene (45 ppb), trichloroethylene (34 ppb), and zinc (250 ppm). Analysis of the second drum storage composite samples indicated the presence of barium (270 ppm), chromium (98 ppm), Aroclor-1248 (560 ppm), and trichloroethylene (29 ppb).

Test pits were dug in the area adjacent to the north of the large burn area described above and along the dirt roadway north of the manufacturing area. Composite soil samples were collected from depths to 3 feet below ground surface. Results of the samples showed elevated amounts of barium (300 ppm), cadmium (7.0 ppm), chromium (110 ppm), copper (600 ppm), lead (130 ppm), molybdenum (5.5 ppm), zinc (710 ppm), and Aroclor-1248 (69 ppm).

Test pits were also dug in the area along the dirt roadway north of the manufacturing area. Composite soil samples were collected from various depths. Results of samples showed elevated amounts of barium (560 ppm), cadmium (23 ppm), chromium (860 ppm), copper (2,100 ppm), lead (630 ppm), mercury (0.1 ppm), molybdenum (76 ppm), nickel (120 ppm), zinc (1,900 ppm), Aroclor-1248 (33 ppm), 1,2-trans-dichloroethylene (550 ppb), and trichloroethylene (12 ppb).

In 1990, E&E collected four investigative soil samples and one background soil sample during the SSI field sampling trip. Soil sample S1 was a composite of two areas in a former storage area located at the southwestern corner of the fenced manufacturing area. Sample S2 was a composite of two locations within barren ground located west and east of the manufacturing area's western fence. Sample S3 was a composite of two locations near the concrete pad at the west-central area of the property. Soil sample S6 was a composite of two areas along the northern shoulder of the dirt access road where scrap metal and other materials were strewn around the road. Background soil sample S7 was collected from an undisturbed area 400 feet north of the unnamed stream, near Western Avenue.

Results of the 1990 SSI soil sampling were compared to background soil conditions defined by sample S7. Analysis of the investigative samples indicated the presence of volatile and semi-volatile organic compounds, PCBs, and inorganic analytes. Sample S3 contained the most hazardous substances with the highest concentrations, including total xylenes (11 ppb). Semi-volatile organic compounds

include acenaphthene (520 ppb), fluorene (370 ppb), phenanthrene (6,000 ppb), anthracene (970 ppb), fluoranthene (9,800 ppb), pyrene (11,000 ppb), benzo(a)anthracene (7,000 ppb), chrysene (9,100 ppb), benzo(b)fluoranthene (9,000 ppb), benzo(k)fluoranthene (9,000 ppb), benzo(a)pyrene (5,500 ppb), indeno(1,2,3-cd)pyrene (5,700 ppb), dibenzo(a,h)anthracene (2,200 ppb), and benzo(g,h,i) perylene (700 ppb). Aroclor-1248 (750 ppb) and Aroclor-1254 (4,200 ppb) were detected. Inorganic analytes present in the sample included cadmium (3.5 ppm), chromium (148 ppm), copper (196 ppm), lead (456 ppm), magnesium (19,200 ppm), mercury (0.17 ppm), and zinc (208 ppm).

ESI analytical results indicate affected sediment contains volatile organic compounds, pesticides, PCBs, and heavy metals. Some of these contaminants also were found in the background sample at lower concentrations.

5.0 Discussion of Migration Pathways

5.1 Introduction

This section includes information useful in analyzing the potential impact of contaminants found at the AMCA site on the four migration pathways: groundwater, surface water, soil, and air.

5.2 Groundwater

Onsite boring logs indicated fill varies from 0 to 11 feet thick. Beneath the fill is 60 to 180 feet of Quaternary glacial till that contains occasional sand seams. Below the till is the Silurian Niagara Dolomite, the primary drinking water aquifer for the surrounding area (Hughes, et al. 1966). It is the predominant bedrock lithology in the area; however, one onsite borelog indicates shale is the uppermost bedrock type. In the area, the bedrock begins at a depth of 60 to 180 feet below ground surface and is about 400 feet thick. Three onsite bedrock monitoring wells were installed and sampled and five nearby residential bedrock drinking water wells were sampled during the ESI. The direction of groundwater flow in the area was determined to be north-northeast.

Previous analysis of water samples collected from the glacial till aquifer document an observed release to that aquifer (E&E 1991). Hydraulic connection exists between the Silurian Niagara Dolomite aquifer and the overlying glacial till aquifer (Csallany and Walton 1963).

Five nearby residential drinking water wells were sampled during the ESI. These wells, located north, east, and south of the site, draw water from the bedrock aquifer. The chemical analysis of RW01, an onsite drinking water well, indicated the presence of six inorganic compounds. RW02 was an upgradient, background well located at a private residence approximately 900 feet south of the site. Chemical analysis of RW03, a residential well located approximately 300 feet east of the site, indicated the presence of five inorganic compounds. Chemical analysis of RW04, a residential well located approximately 900 feet west of the site, indicated the presence of nine inorganic compounds. The chemical analysis of RW05, a residential well located approximately 1,200 feet northeast of the site, indicated the presence of five inorganic compounds.

Three onsite bedrock monitoring wells were installed and sampled during the ESI. Chemical analysis of GW02, a downgradient monitoring well, indicated the

presence of three inorganic compounds. A potential for direct contact with affected groundwater exists near the site based on the presence of inorganic compounds downgradient residential drinking water wells.

Groundwater is used as the sole source of drinking water within four miles of the site (Tables 5-1 and 5-2). The communities of Chicago Heights and Matteson are served by City of Chicago water drawn from Lake Michigan. Municipal systems provide drinking water to 72,759 people within four miles of the site. Approximately 713 private wells exist within four miles of the site; these wells serve about 2,018 people. Most private wells within four miles of the site are screened in the Silurian Niagara Dolomite aquifer. The population figure of 2,018 was obtained by counting houses that were listed by the Illinois State Water Survey as having a private well and multiplying that number by 2.83, which is the average number of persons per household in Cook and Will Counties (ISWS 1992, USDC 1990).

5.3 Surface Water

Four sediment samples were collected during the ESI. Chemical analysis of the samples indicated the presence of six organic compounds and three inorganic compounds. Plant employees and people downgradient of the site are potential targets for direct contact with affected site sediments. Sediment sample ST03, collected from the unnamed stream just as it exits the site to the east, contained three volatile organic compounds, three pesticides/PCBs, and three inorganic analytes. The unnamed stream flows past a residential area downstream of the sample point.

Runoff on the western side of the manufacturing area is diverted to a drainage ditch that empties into a marsh. The marsh flows into the unnamed stream that exits the property to the east beneath Western Avenue. The facility maintains a National Pollution Discharge Elimination System outfall at the eastern end of the marsh (E&E 1991). The outfall discharges runoff collected from the employee parking lot located along the eastern site border. The unnamed stream eventually joins Thorn Creek about a mile north of the site.

Downstream targets along the surface water pathway include wetlands, sensitive environments, and potential areas where recreational fishing might take place. Thorn Creek passes through Thorn Creek State Nature Preserve. The 15-mile surface water pathway is comprised of wetlands, as designated by the U.S. Fish and Wildlife Service National Wetlands Inventory maps.

Muni		able 5-1 ources Within Four Mile	es of Site
Distance from Site	Municipality	No. Wells/ Approx. Pop. Served	Source Type
1 to 2 miles	University Park	4 wells/6,204	Bedrock - Silurian
	Crete	2 wells/2,709	
 	S. Chicago Heights	3 wells/3,597	
	Park Forest	1 well/3,522	
2 to 3 miles	Crete	3 wells/4,064	Bedrock - Silurian
	Steger	3 wells/8,584	
	Park Forest	6 wells/21,134	
	Richton Park	3 wells/10,523	
3 to 4 miles	Monee	2 wells/1,044	Bedrock - Silurian
	Matteson	1 backup well/11,378	

	e 5-2 thin Four Miles of Site
Radial Distance from Site in Miles	Approximate Population Served by Private Wells
0 to 0.25	14
0.25 to 0.5	51
0.5 to 1	212
1 to 2	249
2 to 3	603
3 to 4	889
Total Population	2,018

5.4 Soil Exposure

The site owner performed a soil investigation in 1986. Soil samples were collected from several onsite disposal areas to determine if these sources had impacted site soil. A limited analytical program was conducted based on the historical use of possible wastes and contaminants at the facility. The investigation report summarized the possible contaminants used at the site, including acid/caustics and plating solutions, alloy metals, cyanide, trichloroethylene and other degreasing solvents, cutting and quenching oils, and die-casting hydraulic oils.

During the investigation, several onsite disposal areas were studied, including the sludge drying beds and Imhoff tank, a small burn area northeast of the Imhoff tank, a drum storage area east of the concrete pad, a large burn area adjacent to the western manufacturing area fence, a rubble area near the rear fence gate, a second drum storage area near the southwestern corner of the fenced manufacturing area, and an area adjacent to the north of the large burn area described above. Composited soil samples were collected from these disposal areas and compared to composited background soil samples collected near the western site border.

Results of the soil samples collected at the sludge drying beds indicated no significant concentrations of hazardous substances. The small burn area results showed PCBs and volatile organic compounds. Analysis of the drum storage composite samples indicated the presence of PCBs and volatile organic compounds. Results of samples collected from the large burn area showed elevated amounts of inorganic analytes, PCBs, and volatile organic compounds. Analysis of samples collected from the rubble area near the rear fence indicated PCBs, inorganic analytes, and volatile organic compounds. Analysis of the second drum storage composite samples indicated the presence of inorganic analytes, PCBs, and volatile organic compounds.

Test pits were dug in the area adjacent to the north of the large burn area described above. and along the dirt roadway north of the manufacturing area. Composite soil samples were collected from depths up to 3 feet below ground surface. Results of the samples showed elevated amounts of inorganic analytes and PCBs. Test pits were also dug in the area along the dirt roadway north of the manufacturing area. Composite soil samples were collected from various depths. Results of samples showed elevated amounts of PCBs, inorganic analytes, and volatile organic compounds.

In 1990, E&E collected four investigative soil samples and one background soil sample during the SSI field sampling trip. Soil sample S1 was a composite of two areas in a former storage area located at the southwestern corner of the fenced manufacturing area. Sample S2 was a composite of two locations within barren ground located west and east of the manufacturing area's western fence. Sample S3 was a composite of two locations near the concrete pad at the west-central area of the property. Soil sample S6 was a composite of two areas along the northern shoulder of the dirt access road where scrap metal and other materials were strewn around the road. Background soil sample S7 was collected from an undisturbed area 400 feet north of the unnamed stream, near Western Avenue. Results of the soil sampling were compared to background soil conditions. Analysis of the investigative samples indicated the presence of volatile and semi-volatile organic compounds, PCBs, and inorganic analytes.

The onsite population consists of approximately 216 facility employees. The population within a 1-mile radius of the site is approximately 5,798. The population within one-half mile of the site was obtained by counting houses on the United States Geological Survey 7.5 minute quadrangles and then multiplying that number by 2.83, which is the average number of persons per household in Cook and Will Counties. The population greater than one mile from the site was estimated by determining the percent of a city's area within each distance ring and multiplying that number by that percentage of the city's population (USGS 1990 and 1991, USDC 1990). City percentage populations for each distance ring were added up. This method also was used to determine air pathway populations.

5.5 Air

No past or present air sampling has been conducted at the AMCA site. Wind direction is assumed to be from the southwest. Site topography, which is generally flat, would not hinder wind transportation of particulate substances offsite.

Potential air pathway targets include residences, forest preserve property, and sensitive environments. The nearest residences are immediately adjacent to the AMCA property line. Farmland and sensitive environments are scattered throughout the areas adjacent to the site. Approximately 105,540 people live within four miles of the site.

6.0 References

- Black & Veatch Waste Science, Inc. (BVWS), 1991. Quality Assurance Project Plan for Region V Superfund Site Assessment Program. September 27.
- BVWS, 1992. Expanded Site Inspection Site Specific Implementation Plan for Continental-Midland Inc., USEPA ID No. ILD 197 470 001.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, Vol.. 12, No. 3, pp. 423-428.
- Csallany, S. and W.C. Walton, 1963. Yields of shallow dolomite wells in northern Illinois, Illinois Water Survey Report Inv. 46.
- Ecology and Environment, 1991. Screening site inspection report for Continental-Midland AMCA International, Park Forest, IL, USEPA ID: ILD 051 069 854.
- Environmental Resources Management North Central, Inc., 1986. Remedial Investigation Program for DESA Industries, Phase I, Volume I.
- Hazard Ranking System, 1990. Final Rule, December 14.
- Hughes, G.M., P. Kraatz and R.A. Landon, 1966. Bedrock Aquifers of Northeastern Illinois, Illinois State Geological Survey, Circular 406.
- Illinois Atlas and Gazetteer, Delorme Mapping, 1991.
- Illinois State Water Survey (ISWS), 1992. Private and PICS database printouts.
- United States Department of Commerce, 1990. Summary of Population and Housing Characteristics, Illinois.
- United States Geological Survey (USGS), 1990. Topographic map, Dyer, IL-IN, 7.5 minute quadrangle.
- USGS, 1990. Topographic map, Steger, IL, 7.5 minute quadrangle.
- USGS, 1991. Topographic map, Calumet City, IL-IN, 7.5 minute quadrangle.
- USGS, 1991. Topographic map, Harvey, IL, 7.5 minute quadrangle.

- Walton, W.C. and S. Csallany, 1962. Yields of deep sandstone wells in northern Illinois, Illinois Survey Report Inv. 43.
- Willman, H.B., 1971. Summary of the geology of the Chicago area, Illinois State Geological Survey, Circular 460.

SDMS US EPA Region V

Imagery Insert Form

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

	OLOR or RESOLUTION variations. e noted, these pages are available in monochrome. The source document pain the images. The original document is available for viewing at the Superfu Specify Type of Document(s) / Comments:
This document of	siness Information (CBI). contains highly sensitive information. Due to confidentiality, materials with not available in SDMS. You may contact the EPA Superfund Records Mans document. Specify Type of Document(s) / Comments:
Unscannable Ma Oversizedx_ Due to certain so SDMS.	or Format. canning equipment capability limitations, the document page(s) is not available.
	Specify Type of Document(s) / Comments:
4 P.P.F.V.P.V.V.	A – 15-MILE SURFACE WATER ROUTE MAP

Appendix A

AMCA International Corp. (a.k.a. Continental-Midland, Inc.)

15-Mile Surface Water Route Map

Appendix B

AMCA International Corp. (a.k.a. Continental-Midland, Inc.)

Target Compound List and Target Analyte List

Target Compound List

Volatiles

Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride

Acetone

Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane

1,2-Dichloroethene (total)

Chloroform

1,2-Dichloroethane

2-Butanone

1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene

Trichloroethene

Dibromochloromethane 1,1,2-Trichloroethane

Benzene

trans-1,3-Dichloropropane

Bromoform

4-Methyl-2-pentanone

2-Hexanone

Tetrachloroethene

Toluene

1,1,2,2-Tetrachloroethane

Chlorobenzene Ethyl benzene

Styrene

Xylenes (total)

Source:

Target Compound List for water and soil with low or medium levels of volatile and semi-volatile organic contaminants, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, September 27, 1991.

Target Compound List (Continued)

Semi-Volatiles

Phenol Acenaphthene 2,4-Dinitrophenol bis(2-Chloroethyl) ether 2-Chlorophenol 4-Nitrophenol 1,3-Dichlorobenzene Dibenzofuran 2,4-Dinitrotoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Diethylphthalate 2-Methylphenol 4-Chlorophenyl-phenyl ether 2,2-oxybis-(1-Chloropropane) Fluorene 4-Methylphenol 4-Nitroaniline N-Nitroso-di-n-dipropylamine 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine Hexachloroethane Nitrobenzene 4-Bromophenyl-phenyl ether Hexachlorobenzene Isophorone 2-Nitrophenol Pentachlorophenol 2,4-Dimethylphenol Phenanthrene bis(2-Chloroethoxy) methane Anthracene 2,4-Dichlorophenol Carbazole 1,2,4-Trichlorobenzene Di-n-butylphthalate Naphthalene Fluoranthene 4-Chloroaniline Pyrene Hexachlorobutadiene Butylbenzylphthalate 3,3-Dichlorobenzidine 4-Chloro-3-methylphenol Benzo(a)anthracene 2-Methylnaphthalene Hexachlorocyclopentadiene Chrysene 2,4,6-Trichlorophenol bis(2-Ethylhexyl)phthalate 2,4,5-Trichlorophenol Di-n-Octylphthalate 2-Chloronaphthalene Benzo(b)fluoranthene Benzo(k)fluoranthene 2-Nitroaniline

Previously known by the name of bis(2-chloroisopropyl) ether.

Source:

Dimethylphthalate

Acenaphthylene 2,6-Dinitrotoluene

3-Nitroaniline

Target Compound List for water and soil with low or medium levels of volatile and semi-volatile organic contaminants, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, September 27, 1991.

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Target Compound List (Continued)

Pesticide/PCB

alpha-BHC 4.4-DDT beta-BHC Methoxychlor delta-BHC Endrin ketone gamma-BHC (Lindane) Endrin aldehyde alpha-chlordane Heptachlor gamma-chlordane Aldrin Heptachlor epoxide Toxaphene Endosulfan I Aroclor-1016 Dieldrin Aroclor-1221 4.4-DDE Aroclor-1232 Aroclor-1242 Endrin Endosulfan II Aroclor-1248 4.4-DDD Aroclor-1254 Endosulfan sulfate Aroclor-1260

Source:

Target Compound List for water and soil containing less than high concentrations of pesticides/aroclors, as shown in the Quality Assurance Project Plan for Region V Superfund Site Assessment Program, September 27, 1991.

Target Analyte List

Magnesium Aluminum Manganese Antimony Arsenic Mercury Barium Nickel Beryllium Potassium Cadmium Selenium Calcium Silver Sodium Chromium Thallium Cobalt Vanadium Copper Iron Zinc Cyanide Lead

Source: Target Analyte List in the Quality Assurance Project Plan for

Region V Superfund Site Assessment Program, September 27, 1991.

Appendix C

AMCA International Corp. (a.k.a. Continental-Midland, Inc.)

Analytical Results

Appendix C

Table of Contents

Data Qualifiers	C-2
Analytical Results	C-4
Residential Well Water Samples	C-4
Organic Analysis	C-4
Volatile Compounds	C-4
Semi-Volatile Compounds	
Pesticide/PCBs	
Inorganic Analysis	
Metals/Cyanide	
Tentatively Identified Compounds	
Groundwater Samples	C-11
Organic Analysis	
Volatile Compounds	C-11 C-11
Semi-Volatile Compounds	C-12
Pesticide/PCBs	C-12 C-14
Inorganic Analysis	C-15
Metals/Cyanide	C-15
Tentatively Identified Compounds	C-16
Sediment Samples	C-18
Organic Analysis	C-18
Volatile Compounds	C-18
Semi-Volatile Compounds	C-19
Pesticide/PCBs	C-21
Inorganic Analysis	C-22
Metals/Cyanide	C-22
Tentatively Identified Compounds	

Data Reporting Qualifiers Definitions for Organic Chemical Data Qualifiers

- R Indicates that the data are unusable. The compound may or may not be present.
- U Indicates compound was analyzed for but not detected. The associated numerical value is the sample quantitation limit.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is only used for TICs where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, the N code is not used.
- P This flag is used for a pesticide Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported and flagged with a "P".
- C This flag applies to results where <u>identification</u> has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag must be used for a TIC as well as for a positively identified TCL compound
- E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for the specific analysis. This flag will <u>not</u> apply to pesticide/PCBs analyzed by GC/MS methods. If one or more compounds have a response greater than full scale, the sample or extract must be diluted and re-analyzed according to the specifications.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X Other specific flags may be required to properly define the results. The "X" flags are fully described on the data tables.

Data Reporting Qualifiers Definitions for Inorganic Chemical Data Qualifiers

- R Indicates that the data are unusable. The compound may or may not be present.
- U Indicates compound was analyzed for but not detected. The associated numerical value is the sample quantitation limit.
- J Indicates an estimated value.
- B Indicates that the reported value is less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- E The reported value is estimated because of the presence of interference.
- M Duplicate injection precision criteria not met.
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- W Post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis was not within control limits.
- + Correlation coefficient for the MSA was less than 0.995.

Volatile Organic Analysis for Residential Well Water AMCA International

;	Sample Location and Number Concentrations in ug/L				
ļi					
Volatile Compound	RW01	RW02	RW03	RW04	RW05
	HQ1	HO2	HO4	HQ5	HQ6
Chloromethane	l U	l U	1 U	I U	1 U
Bromomethane	l U	1 U	1 U	l U	l U
Vinvl Chloride	1 U	I U	I U	l U	I U
Chloroethane	l UJ	l UJ	1 UJ	1 UJ	1 UJ
Methylene Chloride	2 UJ	2 UJ	2 UJ	2 U .	2 U
Acetone	22 UJ	23 UJ	25 UJ	22 UJ	24 UJ
Carbon Disulfide	l UJ	i UJ .	l UJ	l UJ	ı UJ
1,1-Dichloroethene	l UJ	l UJ	l UJ	l UJ	ı UJ
1,1-Dichloroethane	1 U	1 U	i U	1 U	īŪ
Cis-1,2-Dichloroethene	1 U	l U	i U	l U	î Ü
Trans-1,2-Dichloroethene	1 U	1 U	1 U	l U	1 U
Chloroform	1 U	1 UJ	I U	1 U	I U
1.2-Dichloroethane	7 U	10 U	13 U	5 U	10 U
2-Butanone	5 RUJ	5 RUJ	5 RUJ	5 RUJ	5 RUJ
1,1,1-Trichloroethane	I U	1 U	1 U	I U	i U
Carbon Tetrachloride	1 U	l UJ i	l UJ	l UJ	07 J
Bromodichloromethane	1 U	1 U	ı Ü	l U	1 U
1,2-Dichloropropane	I U	1 U	0.06 J	l U ,	1 U
cis-1,3-Dichloropropene	1 U ,	ΙÜ	1 U	1 U	1 U
Trichloroethene	1 U	l U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	ΙÜ	l U	1 U
1,1,2-Trichloroethane	1 U	1 U	ı Ü	I U .	i Ü
1,2-Dibromoethane	ΙÜ	านี้.	1 U	1 U	1 l.
Benzene	i U	l U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	ιÜ	1 U	I U
Bromoform	1 U	1 U :	1 U	l U	ı U
4-Methyl-2-Pentanone	5 U	5 U	5 U .	5 U	5 U
2-Hexanone	5 U	5 1.	5 U	5 U	5.0
Tetrachloroethene	ı U	1 U	1 U	1 U	1 (
Bromochloromethane	l U	1 (ΙÜ	1 U	ī U -
1,1,2,2-Tetrachloroethane	I U	1 U	1 U	ı u T	1 U
Toluene	1 UJ	I UJ	0.06 J	0.7 J	l U
Chlorobenzene	l U	1 U	ı U	1 U	l Ū
Ethylbenzene	1 UB	1 UB	1 UB	1 UB	I UB
Styrene	l U	1 U ,	1 U	l U	1 U:
1,2 Dichlorobenzene	1 U	1 U ,	ı Ü	1 U	ΙU
Total Xylenes	l Ü	l U j	1 U 1	1 U .	î U
1,3 Dichlorobenzene	1 U	1 11	1 U	1 U	1 U
1,4 Dichlorobenzene	1 U	1 U	1 U	1 U	ı Ü
1,2-Dibromo-3-chloropropane	1 U	iū	i Ū	i v	าบ
Total Number of TICs *	4	1	7	2	7

Total Number of TICs * 4 1 2

* - Number, not concentration, of tentatively identified compounds (TICS) found in each sample

Semi-volatile Organic Analysis for Residential Well Water AMCA International

	Sample Location and Number				
Semi-volatile		Con	centrations in u	1 <u>2</u> /L	i
Compound	RW01	RW02	RW03	RW04	RW05
	HQ1	HQ2	HQ4	HQ5	HQ6
Phenol	5 U	5 U	5 U	5 U	5 U
bis(2-Chloroethyl)Ether	5 U	5 U	5 U	5 U	5 U
2-Chlorophenol	5 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U
2-Methylphenol	5 U	5 U	5 U	5 U	5 U
2,2-oxybis(1-Chloropropane	5 U	5 U	5 U	5 U	5 U
4-Methylphenol	5 U	5 U	5 U	5 U	5 U
n-Nitroso-Di-n-Propylamine	5 U	5 U	5 U	5 U	5 U
Hexachloroethane	5 U	5 U	5 U	5 U	5 U
Nitrobenzene	5 U	5 U	5 U	5 U	5 U
Isophorone	5 U	5 U	5 U	5 U	5 U
2-Nitrophenol	5 U	5 U	5 U	5 U	5 U
2,4-Dimethylphenol	5 U	5 U	5 U	5 U	5 U
bis(2-Chloroethoxy)Methane	5 U	5 U	5 U	5 U	5 U_
2,4-Dichlorophenol	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5 U	5 U	5 U	5 U	5 U
Naphthalene	5 U	5 U	5 U	5 U	5 U
4-Chloroaniline	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	5 U	5 U	5 U	5 U	5 U
4-Chloro-3-Methylphenol	5 U	5 U	5 U	5 U	5 U
2-Methylnaphthalene	5 U	5 U	5 U	5 U	5 U
Hexachlorocyclopentadiene	5 U	5 U	5 U	5 U	5 U
2,4,6-Trichlorophenol	5 U	5 U	5 U	5 U	5 U
2,4,5-Trichlorophenol	20 U	20 U	20 U	20 U	20 U
2-Chloronaphthalene	5 U	5 U	5 U	5 U	5 U
2-Nitroaniline	20 U	20 U	20 U	20 U	20 U
Dimethyl Phthalate	5 U	5 U	5 U	5 U	5 U
Acenaphthylene	5 U	5 U	5 U	5 U	5 U

Semi-volatile Organic Analysis for Residential Well Water AMCA International

	Sample Location and Number				
Semi-volatile		Cone	centrations in u	g/L	•
Compound	RW01	RW02	RW03	RW04	RW05
•	HQ1	HQ2	HQ4	HQ5	HQ6
2.6-Dinitrotoluene	5 U	5 U	5 U	5 U	5 U
3-Nitroaniline	20 U	20 U	20 U	20 U	20 U
Acenaphthene	5 U	5 U	5 U	5 U	5 U
2,4-Dinitrophenol	20 UJ	20 UJ	20 UJ	20 UJ	20 UJ
4-Nitrophenol	20 U	20 U	20 U	20 U	20 U
Dibenzofuran	5 U	5 U	5 U	5 U	5 U
2,4-Dinitrotoluene	5 U	5 U	5 U	5 U	5 U
Diethylphthalate	5 U	5 U	5 U	5 U .	5 U
4-Chlorophenyl-phenylether	5 U	5 U	5 U	5 U	5 U
Fluorene	5 U	5 U	5 U	5 U -	5 U
4-Nitroaniline	20 U	20 U	20 U	20 U	20 U
4,6-Dinitro-2-Methylphenol	20 U	20 U	20 U	20 U	20 U
n-Nitrosodiphenylamine	5 U	5 U	5 U	5 U	5 U
4-Bromophenyl-phenylether	5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	5 U	5 U	5 U	5 U	5 U
Pentachlorophenol	20 U	20 U .	20 U	20 U	20 U
Phenanthrene	5 U	5 U	5 U	5 U	5 U
Anthracene	5 U	5 U	5 U .	5 U	5 U
Carbazole	5 U	5 U	5 U	5 U	5 U
di-n-Butylphthalate	5 U	5 U	5 U	5 U ;	5 U
Fluoranthene	5 U	5 U .	5 U	5 U	5 U
Pyrene	5 U	5 U	5 U	5 U	5 U
Butylbenzylphthalate	5 U	5 U	5 U	5 U	5 U
3,3 -Dichlorobenzidine	5 U	5 U	5 U	5 U	5 U
Benzo(a)Anthracene	5 U	5 U	5 U	5 U	5 U
Chrysene	5 U	5 U	5 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate	5 U	5 U ,	0.6 J	5 U	5 U
di-n-Octyl Phthalate	3 U	5 Ü	5 U	5 U	5 U
Benzo(b)Fluoranthene	5 U	5 U	5 U	5 U	5 U
Benzo(k)Fluoranthene	5 U	5 U	5 U	3 U	5 U
Benzo(a)Pyrene	5 U	5 U	5 U	5 U ,	5 U
Indeno(1,2,3-cd)Pyrene	5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)Anthracene	5 U	5 U 1	5 U	5 U	5 U
	5 U	5 U	5 U	5 U	5 U
Total Number of TICs*	4	2	1	4	3
Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	5 U	1		5 U	5 U

^{*} Number, not concentration, of tentatively identified compounds (TICs) found in each sample.

RWW-sv

Pesticide/PCB Analysis for Residential Well Water AMCA International

	Sample Locations and Number					
Pesticide/		Concentrations in ug/L				
PCB	RW01	RW02	RW03	RW04	RW05	
!	HQl	HQ2	HQ4	HQ5	HQ6	
Alpha-BHC	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ :	0.010 UJ	
Beta-BHC	0.010 U	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	
Delta-BHC	0.010 U	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	
Gamma-BHC (Lindane)	0.010 U	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	
Heptachlor	0.010 U	0.010 UJ	0.010 UJ	0010 UJ	0.010 UJ	
Aldrin	0.010 U	0.010 UJ	0.010 UJ	0.0 10 UJ	0.010 UJ	
Heptachlor Epoxide	0.010 U	0.010 UJ	0.010_UJ	0.010 UJ	0.010 UJ	
Endolsulfan I	0.010 U	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	
Dieldrin	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
4,4'-DDE	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
Endrin	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
Endosulfan II	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
4,4'-DDD	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
Endosulfan Sulfate	0.020 U	0.020 UJ	0.020 UJ	0 020 UJ	0.020 UJ	
4,4'-DDT	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
Methoxychlor	0.10 U	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UJ	
Endrin Ketone	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
Endrin Aldehyde	0.020 U	0.020 UJ	0.020 UJ	0.020 UJ	0.020 UJ	
Alpha-Chlordane	0.010 U	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	
Gamma-Chlordane	0.010 U	0.010 UJ	0.010 UJ	0.010 UJ	0.010 UJ	
Toxaphene	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	
Aroclor-1016	0.20 U	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	
Aroclor-1221	0.40 U	0.40 UJ	0.40 UJ	0.40 UJ	0.40 UJ	
Aroclor-1232	0. 2 0 U	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	
Aroclor-1242	0.20 U	0.20 UJ	0.20 UJ	0. 2 0 UJ	_0.20 UJ	
Aroclor-1248	0.20 U	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	
Aroclor-1254	0.20 U	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	
Aroclor-1260	0 20 U	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	

swpest wk4

Inorganic Analysis for Residential Well Water AMCA International

	Sample Location and Number						
Metals and		Concentrations in ug/L					
Cyanide	RW01	RW02	RW03	RW04	RW05		
	S-02-1	S-02-2	S-02-4	S-02-5	S-02-6		
Aluminum	31.0 UJ*	229 J*	31.0 UJ*	31.0 UJ*	53 1 JB*		
Antimony	48.0 U	48.0 U	48.0 U	48.0 U	480 U		
Arsenic	3.6 RB	2.0 RU	2.2 RB	2.0 RU	5.8 R		
Barium	33.4	1.7 B	82.4	81.2	69.1		
Beryllium	1.0 U	10 U	1.0 U	1.0 U	10 U		
Cadmium	0.10 U	0 10 U	0.10 U	0.10 US	0.10 US		
Calcium	133000	1450	139000	183000	187000		
Chromium	10.0 L!	10 0 U	10.0 U	_10.0 U	10.0 U		
Cobalt	10.0 U	100 U	10.0 U	10.0 U	10.0 U		
Сорреі	5.3 UB	5.2 UB	50 U	201 J	5.0 U		
Iron	449 J	43 4 UB	257 J	11100 J	3590 J		
Lead	1.0 U	1.0 U	1.0 U	_ 1.6 B	1.0 U		
Magnesium	72300	2180	70400	94200	98100		
Manganese	4.9 B	2.0 U	3.0 B	74.3	40.7		
Mercury	0 20 U	0 20 U	0.20 U	0.20 U	0 20 U		
Nickel	16.0 U	16.0 U	16.0 U	_160 U	16.0 U		
Potassium	7000	2240	6020	6720	3400		
Selenium	2.0 US	2.0 UJ+	2.0 US	2.2 S	2.0 US		
Silver	4.0 U	4.0 U	4.0 U	4.0 U	4.0 <u>U</u>		
Sodium	21500 J	446000 J	19400 J	51100 J	21100 J		
Thallium	1.0 RUS	1.0 RUS	1.8 RBS	1.0 RUS	1.0 RUS		
Vanadium	7.0 U	7.0 U	7.0 U	7.0 U	7.0 <u>U</u>		
Zinc	10.2 UB	15.5 UB	12.5 UB	62.0 J	9.6 UB		
Cyanide	10.0 U	10.0 U	100 U	10.0 U	10.0 U		

Volatile Organic	Volatile Organic Analysis for Residential Well Water				
Tentatively Identified Compounds					
AMCA International					
RW-01 (HQ1)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Ethane, 1-bromo-2-chloro-	14.87	2.9 UJN			
Unknown	15.57	2.1 J			
Unknown siloxane	19.04	7.1 UJ			
Unknown siloxane	21.67	21 J			
RW-02 (HQ2)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Ethane, 1-bromo-2-chloro-	14.87	4.1 UJN			
RW-03 (HQ4)		i.			
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Ethane, 1-bromo-2-chloro-	14.90	5.3 U			
Tetrahydrotetramethyl furan	15.85	2.1 J			
RW-04 (HQ5)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Ethane, 1-bromo-2-chloro-	14.89	2.1 U			
Unknown siloxane	19.04	3.3 J			
RW-05 (HQ6)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Ethane, 1-bromo-2-chloro-	14.90	4.1 U			
Unknown siloxane	19.07	43_J			

TICVOA

Semi-volatile Orga	Semi-volatile Organic Analysis for Residential Well Water				
Tentat	ively Identified Compor	unds			
[:	AMCA International				
RW-01 (HQ1)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Cyclohexenol isomer	5.62	33 UJ			
2-cyclohexen-1-one	6.55	11 JN			
Unknown	9.49	21 J			
2.6-dimethyl-6-nitro-2-heptene	11.29	20 JN			
RW-02 (HQ2)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Cyclohexenol isomer	5.62	30 UJB			
Unknown	9.49	20 J			
RW-03 (HQ4)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Cyclohexenol isomer	5.60	17 UJB			
RW-04 (HQ5)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Cyclohexenol isomer	5.63	35 UJB			
Cyclohexene 3-chloro-	6.02	12 JN			
Trichloropropene isomer	6.93	21 J			
2,6-dimethyl-6-nitro-2-heptene	11.29	49 UJN			
RW-05 (HQ6)					
Compound Name	Retention Time	Estimated Concentration (ug/L)			
Cyclohexenol isomer	5.63	42 UJB			
2-cyclohexen-1-one	6.57	17 JN			
2-Chlorocyclohexanol	8.84	22 UJN			

TICSVOA

Volatile Organic Analysis for Groundwater AMCA International

	Sample Location and Number Concentrations in ug/L			
Volatile Compound	GW01	GW02	GW03	
!	EJZ10	EJZ11	EJZ13	
Chloromethane	10 UJ	10 UJ	10 UJ	
Bromomethane	10 U	10 U	10 U	
Vinyl Chloride	10 U	10 U	10 U	
Chloroethane	10 U	10 U	10 U	
Methylene Chloride	10 U	10 U	10 U	
Acetone	13 UB	24 UB	16 UB	
Carbon Disulfide	10 U	10 U	10 U	
1,1-Dichloroethene	10 U	10 U	10 U	
1,1-Dichloroethane	10 U	10 U	10 U	
1,2-Dichloroethene (total)	10 U	10 U	10 U	
Chloroform	10 U	10 U	10 U	
1,2-Dichloroethane	10 UJ	10 UJ	7 Ј	
2-Butanone	10 UJ	10 UJ	10 UJ	
I,I,I-Trichloroethane	10 U	10 U	10 U	
Carbon Tetrachloride	10 U	10 U	10 U	
Bromodichloromethane	10 U	10 U	10 U	
1,2-Dichloropropane	10 U	10 U	10 U	
cis-1,3-Dichloropropene	10 U	10 U	10 U	
Trichloroethene	10 U	10 U	10 U	
Dibromochloromethane	10 U	10 U	10 U	
1,1,2-Trichloroethane	10 U	10 U	10 U	
Benzene	10 U	10 U	10 U	
trans-1,3-Dichloropropene	10 U	10 U	10 U	
Bromoform	10 U	10 U	10 U	
4-Methyl-2-Pentanone	10 U	10 U	10 U	
2-Hexanone	10 U	10 U	10 U	
Tetrachloroethene	10 U	10 U	10 U	
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	
Toluene	10 U	6 J	10 U	
Chlorobenzene	10 U	10 U	IO U	
Ethylbenzene	10 U	10 U	10 U	
Styrene	10 U	10 U	10 U	
Xvlene (total)	10 U	10 U	10 U	
Total Number of TICs *	0	1	2	

^{* -} Number, not concentration, of tentatively identified compounds (TICS) found in each sample.

Semi-volatile Organic Analysis for Groundwater AMCA International

	Sample Location and Number				
Semi-volatile	Concentrations in ug/L				
Compound	GW01	GW02	GW03		
	EJZ10	EJZ11	EJZ13		
Phenol	10 U	10 U	10 U		
bis(2-Chloroethyl)Ether	10 U	10 U	10 U		
2-Chlorophenol	10 U	10 U	10 U		
1.3-Dichlorobenzene	10 U	10 U	10 U		
1,4-Dichlorobenzene	10 U	10 U	10 U		
1,2-Dichlorobenzene	10 U	10 U	10 U		
2-Methylphenol	10 U	10 U	10 U		
2.2'-oxybis(1-Chloropropane)	10 U	TO U	10 U		
4-Methylphenol	10 U	10 U	10 U		
n-Nitroso-Di-n-Propylamine	10 U	10 U	10 U		
Hexachloroethane	10 U	10 U	10 U		
Nitrobenzene	10 UJ	10 UJ	10 UJ		
Isophorone	10 U	10 U	10 U		
2-Nitrophenol	10 U	10 U	10 U		
2,4-Dimethylphenol	10 U	10 U	10 U		
bis(2-Chloroethoxy)Methane	10 U	10 U	10 U		
2,4-Dichlorophenol	10 U	10 U	10 U		
1,2,4-Trichlorobenzene	10 U	10 U	10 U		
Naphthalene	10 U	10 U	10 U		
4-Chloroaniline	10 U	10 U	10 U		
Hexachlorobutadiene	10 U	10 U	10 U		
4-Chloro-3-Methylphenol	10 U	10 U	10 U		
2-Methylnaphthalene	10 U	10 U	10 U		
Hexachlorocyclopentadiene	10 UJ	10 UJ	10 UJ		
2.4.6-Trichlorophenol	10 U	10 U	10 U		
2,4,5-Trichlorophenol	25 U	25 U	25 U		
2-Chloronaphthalene	10 U	10 U	10 U		
2-Nitroaniline	25 U	25 U	25 U		
Dimethyl Phthalate	10 U	10 U	10 U		
Acenaphthylene	10 U	10 U	10 U		

Semi-volatile Organic Analysis for Groundwater AMCA International

	Samp	le Location and Nu	ımber		
Semi-volatile	Concentrations in ug/L				
Compound	GW01	GW02	GW03		
•	EJZ10	EJZ11	EJZ13		
2,6-Dinitrotoluene	10 U	10 U	10 U		
3-Nitroaniline	25 U	25 U	25 U		
Acenaphthene	10 U	10 U	10 U		
2,4-Dinitrophenol	25 U	25 U	25 U		
4-Nitrophenol	25 U	25 U	25 U		
Dibenzofuran	10 U	10 U	10 U		
2,4-Dinitrotoluene	10 U	10 U	10 U		
Diethylphthalate	10 U	10 U	10 U		
4-Chlorophenyl-phenylether	10 U	10 U	10 U		
Fluorene	10 U	10 U	10 U		
4-Nitroaniline	25 U	25 U	25 U		
4,6-Dinitro-2-Methylphenol	25 U	25 U	25 U		
n-Nitrosodiphenylamine	10 U	10 U	10 U		
4-Bromophenyl-phenylether	10 U	10 U	10 U		
Hexachlorobenzene	10 U	10 U	10 U		
Pentachlorophenol	25 U	25 U	25 U		
Phenanthrene	10 U	10 U	10 U		
Anthracene	10 U	10 U	10 U		
Carbazole	10 U	10 U	10 U		
di-n-Butylphthalate	10 UЛВ	10 UJB	10 UJB		
Fluoranthene	10 U	10 U	10 U		
Рутепе	10 U	10 U	10 U		
Butylbenzylphthalate	10 U	10 U	0.6 J		
3,3'-Dichlorobenzidine	10 U	10 U	10 U		
Benzo(a)Anthracene	10 U	10 U	10 U		
Chrysene	10 U	10 U	10 U		
bis(2-Ethylhexyl)Phthalate	10 UJB	10 UJB	10 UJB		
di-n-Octyl Phthalate	10 U	10 U	10 U		
Benzo(b)Fluoranthene	10 U	10 U	10 U		
Benzo(k)Fluoranthene	10 U	10 U	10 U		
Benzo(a)Pyrene	10 U	10 U	10 U		
Indeno(1,2,3-cd)Pyrene	10 U		10 U		
Dibenzo(a,h)Anthracene	10 U	10 U			
Benzo(g,h,i)Pervlene	10 U	10 U	10 U		
Total Number of TICs*	3	2	19		

^{*} Number, not concentration, of tentatively identified compounds (TICs) found in each sample.

gw-sv

Pesticide/PCB Analysis for Groundwater AMCA International

<u> </u>	AMCA Internatio				
	· Sample Location and Number				
Pesticide/	GW01	GW02	GW03		
PCB	EJZ10	EJZ11	EJZ13		
Alpha-BHC	0.050 U	0.050 UJ	0.050 U		
Beta-BHC	0.050 U	0 050 UJ	0 050 U		
Delta-BHC	0.050 U	0.050 UJ	0 050 U		
Gamma-BHC (Lind.)	0 050 U	0.050 UJ	0 050 U		
Heptachlor	0 050 UJ	0.050 UJ	0 050 U		
Aldrin	0.050 UJ	0 050 UJ	0 050 U		
Heptachlor Epoxide	0.050 U	0.050 UJ	0 050 U		
Endosulfan I	0 050 U	0.050 UJ	0.050 U		
Dieldrin	0 10 UJ	0.10 UJ	0 10 U		
4,4 -DDE	0.10 5	0 10 UJ	U.10 U		
Endrin	0 10 U	0.10 UJ	0.10 U		
Endesulfan II	0 10 U	0.10 UJ	0 10 U		
4,4'-DDD	0.10 U	0.10 UJ	0.10 U		
Endosulfan Sulfate	010 U	0 10 UJ	0.10 U		
,4,4'-DDT	0.10 U	0 10 UJ	0.10 U		
Methoxychlor	0.50 U	0.50 UJ	0.50 U		
Endrin Ketone	0.10 U	0.10 UJ	0 10 U		
Endrin Aldehyde	0.10 U	0.10 UJ	- 0.10 U		
Alpha-Chlordane	0.050 U	0 050 UJ	0 050 U		
Gamma-Chlordane	0.050 U	0.050 UJ	0.050 U		
Toxaphene	50 U	5.0 UJ	5.0 U		
Aroclor-1016	1.0 U	1.0 UJ	1.0 U		
Aroclor-1221	20 U	2 0 UJ	2.0 U		
Aroclor-1232	10 U	10 UJ	1.0 U		
Aroclor-1242	1.0 U	1.0 UJ	10 U		
Aroclor-1248	10 U	1.0 UJ	1.0 U		
Aroclor-1254	1.0 U	10 UJ	1.0 U		
Aroclor-1260	10 U	1.0 U!	10 U		

pesigw

Inorganic Analysis for Groundwater Samples AMCA International

	Sample Locations and Number			
Metals	Concentrations in ug/L			
and	GW01	GW02	GW03	
Cyanide	MEJJ 87	MEJJ88	MEJJ90	
Aluminum	169 JB	382 J	367 J	
Antimony	24.0 U	24.0 U	24.0 U	
Arsenic	3.0 UJW	3.0 U	7.2 BS	
Barium	73.5 B	65.7 B	68 1 B	
Beryllium	1.0 U	1.0 U	1.0 U	
Cadmium	4.0 U	4.8 B	4.0 U	
Calcium	141000 JE	133000 JE	· 131000 JE	
Chromium	7.0 U	8.0 B	7.0 U	
Cobalt	5.0 U	5.0 U	57.5	
Copper	5.0 U	5.0 U	5.4 B	
Iron	129 J	733	109 J	
Lead	3.0 U	3.0 U	3.0 U	
Magnesium	62500 JE	69500 JE	73600 JE	
Manganese	12.1 B	12 8 B	25.4	
Mercury	0.20 U	0.20 U	0.20 U	
Nickel	7.0 U	7.0 U	19.6 B	
Potassium	8730 JE	8910 JE	8620 JE	
Selenium	30.0 U	30.0 UW	30.0 U	
Silver	5.0 U	5.0 U	5.0 U	
Sodium	28000 JE	27500 JE	33000 JE	
Thallium	4.0 Ü	4.0 U	4.0 U	
Vanadium	4.0 U	4.0 U	4.0 U	
Zinc	25.8 J	5.0 U	6.3 JB	
Cyanide	10.0 UJ	10.0 UJ	Not Analyzed	

gw-mtals

Volatile Organic Analysis for Groundwater Tentatively Identified Compounds **AMCA International** GW02 (EJZ11) Estimated Concentration (ug/L) Compound Name Retention Time Silanol, trimethyl-8.530 <u>11 JN</u> GW03 (EJZ13) Compound Name Retention Time Estimated Concentration (ug/L) 21.610 55 JN Cyclotetrasiloxane, octameth Unknown siloxane 24.570 21 J

TICVOAGW

Semi-volatile Organic Analysis for Groundwater Tentatively Identified Compounds AMCA International GMW01 (EJZ10) Compound Name Retention Time Estimated Concentration (ug/L) Aldol Condensation Product 4.280 10 UJAB 9.470 Unknown 8 J 10.770 Unknown 2 J GW02 (EJZ11) Compound Name Retention Time Estimated Concentration (ug/L) Aldol Condensation Product 4.280 10 UJAB 4.640 Unknown 5 UJB GW03 (EJZ13) Compound Name Estimated Concentration (ug/L) Retention Time Aldol Condensation Product 4.270 5 UJAB 6.060 4 J Unknown Unknown 13.960 1000 J Unknown 22.910 3 J Unknown 24.640 26 J Unknown Alkane 25.190 3 J Unknown Alkane 26.030 4 J Unknown Alkane 26.820 5 J Unknown Alkane 27.580 6 I 27.780 9 J Unknown Unknown 28.070 35 J Unknown Alkane 28.310 8 J Unknown 28.620 2 J Unknown Alkane 29.030 6 J Unknown Alkane 29.780 4 J

30.640

31.330

33.740

35.780

3 J

39 J

43 J

12 J

TICSVGW

Unknown Alkane

Unknown Acid

Unknown

Uknown

Volatile Organic Analysis for Sediment AMCA International

Sample Location and Number				
	Concentrations in ug/kg			
Volatile Compound	ST01	ST02	ST03	ST04
	EJZ06	EJZ07	EJZ08	EJZ09
Chloromethane	15 UJ	14 UJ	18 UJ	15 UJ
Bromemethane	15 U	14 U	18 U	15 U
Vinyl Chloride	15 U	14 U -	18 U	15 U
Chloroethane	15 U	14 U	18 U	15 U
Methylene Chloride	15 UJB	14 U	18 UJB	15 UJB
Acetone	15 UB	26 UB	270 B	28 UB
Carbon Disulfide	15 U	2 .5	l J	15 U
1.1-Dichloroethene	15 U	14 U	18 U	l J
1,1-Dichloroethane	15 U	14 U	18 U	15 U
1.2-Dichloroethene (total)	15 U	14 U	18 U	15 U
Chloroform	15 U	14 U	18 U	15 U
1.2-Dichloroethane	i.5 U	14 U	18 UJ	15 U
2-Butanone	4 3	14 U	61	15 U
1,1,1-Trichloroethane	15 U	14 U	18 U	15 U
Carbon Tetrachloride	15 U	14 U	18 U	15 U
Bromodichloromethane	15 U	14 U	18 U	15 U
1.2-Dichloropropane	15 U	14 U	18 U	15 U
cis-1,3-Dichloropropene	15 U	14 U	18 U	15 U
Trichloroethene	15 U	14 U	18 U	15 U
Dibromochloromethane	15 U	14 U	18 U	15 U
1,1,2-Trichloroethane	15 U	14 U :	18 U	15 U
Benzene	15 U	14 U - i	18 U	2 J
trans-1.3-Dichloropropene	15 U	14 U	18 U	15 U
Bromoform	!5 U_	14 U _	18 U	15 U
4-Methyl-2-Pentanone	15 UJ	14 UJ	18 U	15 U
2-Hexanone	15 U	14 U	18 U	15 U
Tetrachloroethene	15 U	14 U	18 U	15 U
1,1,2,2-Tetrachloroethane	15 U	14 U	18 U	15 U
Toluene	15 U	14 U	31 B	3 UJB
Chlorobenzene	15 U	14 U	18 U	15 U
Ethylbenzene	15 U	14 U	12 J	15 U
Styrene	15 U	14 U	18 U	15 U
Xylene (total)	15 U	14 U	18 U	15 U
Total Number of TICs *	7	0	10	5

^{* -} Number, not concentration, of tentatively identified con pounds (TICS) found in each sample

Semi-volatile Organic Analysis for Sediment AMCA International

	Sample Location and Number			
Semi-volatile		Concentration	ons in ug/kg	
Compound	ST01	ST02	ST03	ST04
1	EJZ06	EZJ07	EJZ08	EJZ09
Phenol	460 U	480 U	590 U	520 U
bis(2-Chloroethyl)Ether	460 U	480 U	590 U	520 U
2-Chlorophenol	460 U	480 U	590 U	520 U
1,3-Dichlorobenzene	460 U	480 U	590 U	520 U
1,4-Dichlorobenzene	460 U	480 U	590 U	520 U
1,2-Dichlorobenzene	460 U	480 U	590 U	520 U
2-Methylphenol	460 U	480 U	590 U	520 U
2,2'-oxybis(1-Chloropropane)	460 U	480 U	590 U	520 U
4-Methylphenol	460 U	480 U	590 U	520 U
n-Nitroso-Di-n-Propylamine	460 U	480 U	590 U	520 U
Hexachloroethane	460 U	480 U	590 U	520 U
Nitrobenzene	460 UJ	480 UJ	590 UJ	520 UJ
Isophorone	460 U	480 U	590 U	520 U
2-Nitrophenol	460 U	480 U	590 U	520 U
2,4-Dimethylphenol	460 U	480 U	590 U :	520 U
bis(2-Chloroethoxy)Methane	460 U	480 U	590 U	520 U
2,4-Dichlorophenol	460 U	480 U	590 U	520 U
1,2,4-Trichlorobenzene	460 U	480 U	590 U	520 U
Naphthalene	460 U	480 U	590 U	40 J
4-Chloroaniline	460 U	480 U	590 U	520 U
Hexachlorobutadiene	460 U	480 U	590 U	520 U
4-Chloro-3-Methylphenol	460 U	480 U	590 U	68 J
2-Methylnaphthalene	460 U	480 U	590 U	24 J
Hexachlorocyclopentadiene	460 UJ	480 UJ	590 UJ	520 UJ
2,4,6-Trichlorophenol	460 U	480 U	590 U	520 U
2,4,5-Trichlorophenol	1100 U	1200 U	1400 U	1200 U
2-Chloronaphthalene	460 U	480 U	590 U	520 U
2-Nitroaniline	1100 U	1200 U	1400 U	1200 U
Dimethyl Phthalate	460 U	480 U	590 U	520 U
Acenaphthylene	460 U	480 U	590 U	520 U

Semi-volatile Organic Analysis for Sediment AMCA International

	Sample Location and Number				
Semi-volatile	Concentrations in ug/kg				
Compound	ST01	ST02	ST03	ST04	
<u> </u>	EJZ06	EZJ07	EJZ08	EJZ09	
2.6-Dinitrotoluene	460 U	480 U	590 U	520 U	
3-Nitroaniline	1100 U	1200 U	1400 U	1200 U	
Acenaphthene	460 U	480 U	590 U	170 J	
2.4-Dinitrophenol	1100 U	1200 U	1400 U	1200 U	
4-Nitrophenol	1100 U	1200 U	1400 U	1200 U	
Dibenzofuran	460 U	480 U	590 U	99 J	
2.4-Dinitrotoluene	460 U	480 U	590 U	520 U	
Diethylphthalate	52 J	480 U	48 J	520 U	
4-Chlorophenyl-phenylether	460 U	480 U	590 U	520 U	
Fluorene	460 U	480 U	590 U	220 J	
4-Nitroaniline	1100 U	1200 U	1400 U	1200 U	
4.6-Dinitro-2-Methylphenol	1100 U	1200 U	1400 U	1200 U	
n-Nitrosodiphenvlamine	460 U	480 U	590 U	520 U	
4-Bromophenyl-phenylether	460 U	480 U	590 U	520 U	
Hexachlorobenzene	460 U	480 U	590 U	520 U	
Pentachlorophenol	1100 U	1200 U	1400 U	1200 U	
Phenanthrene	34 J	13 J	180 J	2200	
Anthracene	460 U	480 U	590 U	690	
Carbazole	460 U	480 U	590 U	220 J	
di-n-Butylphthalate	460 UJB	480 UJB	590 U	1200 UJB	
Fluoranthene	30 J	16 J	260 J	2400	
Pyrene	460 U	22 J	690	6600	
Butylbenzylphthalate	460 U	480 U	590 U	670	
3,3'-Dichlorobenzidine	460 U	480 U	590 U	520 U	
Benzo(a)Anthracene	460 U	480 U	180 J	1900	
Chrysene	460 U	20 J	250 J	2000	
bis(2-Ethylhexyl)Phthalate	460 U	480 UJB	590 UJB	1200 UB	
di-n-Octvl Phthalate	460 U	480 U	590 UJB	1200 UJB	
Benzo(b)Fluoranthene	460 T	20 J	390 J	2800	
Benzo(k)Fluoranthene	460 U	480 U	590 U	320 J	
Benzo(a)Pyrene	460 U	57 J	340 J	1700	
Indeno(1,2,3-cd)Pyrene	460 U	480 U	260 J	1600	
Dibenzo(a,h)Anthracene	460 U	480 U	590 U	360 J	
Benzo(g,h,i)Perylene	460 U	480 U	340 J	1800	
Total Number of TICs*	9	21	22	20	

^{*} Number, not concentration, of tentatively identified compounds (TICs) found in each sample.

SEDSV

Pesticide/PCB Analysis for Sediment					
	AMCA In	ternational			
Sample Location and Number					
I	Concentrations in ug/kg				
Pesticide/PCB	ST01	ST02	ST03	ST04	
	EJZ06	EJZ07	EJZ08	EJZ09	
Alpha-BHC	2.4 UJ	2.5 U	30 U	2.6 U	
Beta-BHC	2.4 UJ	2.5 U	30 U	2.6 U	
Delta-BHC	2.4 UJ	2.5 U	30 U	2.6 U	
Gamma-BHC (Lind.)	2.4 UJ	2.5 U	30 U	2.6 U	
Heptachlor	2.4 UJ	2.5 U	30 U	2.6 U	
Aldrin	2.4 UJ	2.5 U	30 U	2.6 U	
Heptachlor Epoxide	2.4 UJ	2.5 U	30 U	2.6 U	
Endosulfan I	2.4 UJ	2.5 U	30 U	2.6 U	
Dieldrin	[.4]	4.8 U	59 U	<u>3.5</u> ЛР	
4,4'-DDE	4.6 UJ	4.8 U	59 U	5.2 U	
Endrin	4.6 UJ	4.8 U	59 U	5.2 U	
Endosulfan II	1.8 ЛР	4.8 U	59 U	5.2 U	
4,4'-DDD	4.6 UJ	4.8 U	59 U	5.2 U	
Endosulfan Sulfate	4.6 UJ	4.8 U	59 U	4.8 JP	
4,4'-DDT	4.6 UJ	4.8 U	59 U	6.0 P	
Methoxychlor	24 UJ	2.4 UJ	300 U	26 U	
Endrin Ketone	4.6 UJ	4.8 U	59 U	5.2 U	
Endrin Aldehyde	4.6 UJ	4.8 U	59 U	5.2 U	
Alpha-Chlordane	2.0 ЛР	2.8 P	940 PD	5.2 P	
Gamma-Chlordane	2.4 UJ	0.62 ЛР	160	2.9 P	
Toxaphene	240 UJ	250 U	3000 U	260 U	
Aroclor-1016	46 UJ	48 U	590 U	52 U	
Aroclor-1221	94 UJ	98 U	1200 U	100 U	
Aroclor-1232	46 UJ	48 U	590 U	52 U	
Aroclor-1242	46 UJ	48 U	590 U	52 U	
Aroclor-1248	46 UJ	280	47000 PD	52 U	
Aroclor-1254	46 JP	48 U	590 U	52_U	
Aroclor-1260	46 UJ	48 U	590 U	52 U	

* Can be used for qualitative use only.

pess

Inorganic Analysis for Sediment Samples AMCA International

<u> </u>					
	Sample Locations and Number				
Metals	Concentrations in mg/kg				
and	ST01	ST02	ST03	ST04	
Cyanide	MEJJ83	MEJJ84	MEJJ85	MEJJ 86	
Aluminum	12700	13200	12800	12800	
Antimony	3.0 U	3.1 U	3.7 U	3.7 U	
Arsenic	7.6 *	2.5 B*	5.9 *	3.6 *	
Barium	49.1 B	190	117	828	
Beryllium	0.64 B	0.64 B	0.70 B	0.64 B	
Cadmium	1.4 U	1.4 U	33.3	1.7	
Calcium	13000	2720	8220	78800	
Chromium	24.1	18.ό	823	61.9	
Cobalt	14.4	8.6 B	11.3 B	4.9 B	
Copper	22.6	15.0	74.3	69.5	
Iron	21900	15300	20300	27800	
Lead	28.6	38.0_S	67.4 J+	20.0 US	
Magnesium	10300	3260	6080	44700	
Manganese	532	186	322	691	
Mercury	0.14 U	0.14 U	0.20	0.23	
Nickel	30.7	17.4	25.2	19.9	
Potassium	2340	1970	1840	1220 B	
Selenium	0.81 UJNW	0.85 UJNW	1.00 UJNW	1.00 U.JN	
Silver	0.81 U	0.85	1.00 U	1.00 U	
Sodium	1620	1940	2310	3340	
Thallium	0.81	0.85 U	1.00 U	1.00 U	
Vanadium	22.0	23.9	24.1	27.7	
Zinc	458	73.9	398	281	
Cyanide	0.68 U	0.71 U	3.1_J	<u> 083 U</u>	

sedinetals

Volatile Organic Analysis for Sediment Tentatively Identified Compounds AMCA International

ST01 (EJZ06)		
Compound Name	Retention Time	Estimated Concentration (ug/kg)
Unknown Isomer of Methyl Naphthalene	23.330	20 J
Biphenylene	23,660	14 JN
Unknown Isomer of Methyl Naphthalene	24.270	31 J
Unknown PAH	25.420	13 J
1.1'-Biphenyl	26,390	15 JN
Unknown Isomer of Methyl Naphthalene	27.280	15 J
Unknown Isomer of Dimethyl Naphthalene	27.800	34 J
ST03 (EJZ08)		
Compound Name	Retention Time	Estimated Concentration (ug kg)
Unknown	23.160	17 J
Unknown PAH	23.610	28 Ј
Unknown Cycloalkane	24.900	20 J
Unknown Branched Alkane	25.010	14 J
Unknown Cycloalkane	25.290	22 J
Naphthalene, Decahydro-2-methyl	25.840	28 J.N
Unknown Alkane	26.780	33 J
Unknown	26.950	25 Ј
Unknown Alkene	27.500	15 J
Unknown Alkane	27.720	35 J
ST04 (EJZ09)		
Compound Name	Retention Time	Estimated Concentration (ug/kg)
Binhenvlene	23.680	8 IV

Compound Name	Retention Time	Estimated Concentration (ug/kg)
Biphenylene	23.680	8 JN
Unknown PAH	25.510	. 18 Ј
Unknown	27.160	16 J
Unknown PAH	27.770	15 J
Unknown Isomer of Dimethyl N	27.910	_8 J

ticsedv

Semi-volatile Organic Analysis for Sediment Tentatively Identified Compounds

Tentatively Identified Compounds			
	AMCA International		
ST01 (EJZ06)			
Compound Name	Retention Time	Estimated Concentration (ug/kg)	
Unknown	3.600	1500 UJB	
Aldol Condensation Product	5.040	66000 UJAB	
Unknown	6.430	1400 UJB	
Unknown	8.480	210 UJB	
Unknown	9.160	170 UJB	
Unknown Alkane	9.340	170 UJ	
Unknown Alkane	9.580	97 UJ	
Unknown	11.640	220 UЛВ	
Unknown Alkane	17.770	210 UJ	
ST02 (EJZ07)			
Compound Name	Retention Time	Estimated Concentration (ug kg)	
Unknown	3.650	840 UJB	
Aldol Condensation Product	4.790	35000 UJAB	
Unknown	6.360	190 СЛВ	
Unknown	6.520	2600 UJB	
Unknown	6.780	170 UJB	

Compound .vame	Retendon Time	Estimated Contentition (up	<u> </u>
Unknown	3.650	840 L	ΪВ
Aldol Condensation Product	4.790	35000 t	JAB
Unknown	6.360	190 L	ΣВ
Unknown	6.520	2600 L	:Љ
Unknown	6.780	170 U	:JB
Unknown	8.210	140 J	
Unknown	8.490	310 L	Έ.Β
Unknown	9 330	190 J	
Unknown	11.630	320 1	
Unknown Alkane	24.350	1-0 1	
Unknown	26.030	460 J	
Unknown Alkane	26.830	140 J	
Unknown Alkane	27.590	580 J	
Unknown Alkane	28.330	150 J	
Unknown	28.660	380 J	
Unknown Alkane	29.050	590 J	
Unknown	29.110	250 J	
Unknown Alkane	30 650	660 J	
Unknown	32.880	410 J	
Unknown	33.230	130 J	
l'nknown	33.970	210 J	
ST03 (EJZ08)			-

ST03 (EJZ08) Compound Name	D	F-5
	Retention Time	Estimated Concentration (ug kg)
Unknown	3.500	1400 U.B
Aldol Condensation Product	4 450	35000 UJAB
Aldol Condensation Product	5.030	97000 UJAB
Unknown	6.330	3400 U.B
Unknown	11.500	390 СЛВ
Unknown	14.890	680 J
Unknown Alkane	15.300	530 J
Unknown	15.940	360 J
Unknown	16.260	410 J
Unknown	16.490	610 J
Unknown	16.630	550 J
Unknown Alkane	17.060	330 J
Unknown Alkane	17.640	1900 J
Unknown Alkane	18.320	2700 J
Unknown	18.730	760 J
Unknown Trichlorobiphenyl isomer	20.420	1600 J
Unknown Tetrachiorobiphenyl	20 600	390 J
Unknown Tetrachlorobiphenyl	21.120	960 J
Unknown Tetrachlorobiphenyl	21.200	1700 J
Unknown Tetrachlorobiphenyl	21.550	96u J
Unknown Tetrachlorobiphenyl	21.610	630 J
Unknown Tetrachlorobiphenyl	21 800	1400 J

ST04 (EJZ09)		
Compound Name	Retention Time	Estimated Concentration (ug kg)
Unknown	3.500	2800 UJB
Aldol Condensation Product	4.330	16000 UJAB
Unknown	6.130	180 U.B
Unknown	6.310	2300 СЛВ
Unknown	6.590	190 UJB
Unknown	7.490	280 J
Unknown	8.080	290 J
Unknown	8.340	240 UJB
Unknown	9.140	2 kO J
Acetophenone	9.360	220 JN
Unknown	11.500	320 UJB
Unknown	18.590	240 J
[2.2]Paracyclophane	18.980	620 lV.
Unknown	20.860	280 J
rwondn J _I	21.110	210 J
Unknown	25.690	1000 J
Unknown Acid	26.510	800 J
Unknown Acid	26.610	1500 J
Unknown Allkane	30.370	1000 J
Uknown	31.340	1200 J

1155.00

Appendix D

AMCA International Corp. (a.k.a. Continental-Midland, Inc.)

Site Photographs

Date: 08/23/93

Time: 1235

Photo Taken By: D. D. Ingram

Photo Number: 7, Roll 1

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: --

Description: Core from MW-8A, 115' - 131.3'. Wood blocks indicate core runs.

Photo Map Number 2

Date: 08/28/93

Time: 1200

Photo Taken By: S. R. Mrkvicka

Photo Number: 11, Roll 1

Location/ILD #: AMCA International/ILD 051 069 854

Direction of Photo: --

Description: Core from MW-7, 122'-137'. Top of core at upper right corner.

Date: 08/30/93

Time: 1515

Photo Taken By: J. P. Chitwood

Photo Number: 13, Roll 1

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: --

Description: Core from MW-9A, 118.5' - 134'. Top of core at upper left corner.

Photo Map Number 4

Date: 08/30/93

Time: 1235

Photo Taken By: R. J. Reints

Photo Number: 1, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: Northeast

Description: ST04 sampling location. 300 feet south of site at a culvert passing under Western Ave.

Date: 08/30/93

Time: 1250

Photo Taken By: R. J. Reints

Photo Number: 3, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: Northwest

Description: ST03 sampling location. 300 feet north of site. The stream exits the site under Western Ave. at this point.

Photo Map Number 6

Date: 08/30/93

Time: 1345

Photo Taken By: R. J. Reints

Photo Number: 5, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: North

Description: ST02 sampling location. At the stream exiting the wetland north of the facility building.

Date: 08/30/93

Time: 1430

Photo Taken By: R. J. Reints

Photo Number: 7, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: Northwest

Description: ST01 sampling location. At the ditch which drains the parking lot west of the facility buildings and inside (east) of the fence.

Photo Map Number 8

Date: 08/31/93

Time: 0945

Photo Taken By: R. J. Reints

Photo Number: 11, roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: Southeast

Description: RW02 sampling location. Residence located south of the site. Placard depicting sample number in photograph is mislabelled.

Photo Map Location 9

Date: 08/31/93

Time: 1055

Photo Taken By: R. J. Reints

Photo Number: 13, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: South

Description: RW03 sampling location. Residence northeast of the site.

Photo Map Number 10

Date: 08/31/93

Time: 1620

Photo Taken By: R. J. Reints

Photo Number: 15, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: North

Description: RW04 sampling location. Residence southeast of the site, next to the greenhouse.

Date: 08/31/93

Time: 1650

Photo Taken By: R. J. Reints

Photo Number: 17, Roll 2

Location/ILD #: AMCA International/ILD 051 069 854

Direction of Photo: North

Description: RW05 sampling location. Residence north of site.

Photo Map Number 12

Date: 09/02/93

Time: 1437

Photo Taken By: R. J. Reints

Photo Number: 19, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: South

Description: Plant well being evacuated.

Date: 09/02/93

Time: 1445

Photo Taken By: R. J. Reints

Photo Number: 20, roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: South

Description: RW01 sample location, inside

facility.

Photo Map Number 14

Date: 09/02/93

Time: 1445

Photo Taken By: R. J. Reints

Photo Number: 22, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: Northeast

Description: GW03 sample location which is

MW-7, south of facility.

Date: 09/02/93

Time: 1600

Photo Taken By: R. J. Reints

Photo Number: 24, Roll 2

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: East

Description: GW01 sample location which is MW-9, north of the facility.

Photo Map Number 16

Date: 09/02/93

Time: 1705

Photo Taken By: R. J. Reints

Photo Number: 2, Roll 3

Location/ILD #: AMCA
International/ILD 051 069 854

Direction of Photo: Northeast

Description: GW02 sampling location which is MW-8, northeast of the facility.

Appendix E

AMCA International Corp. (a.k.a. Continental-Midland, Inc.)

Boring and Well Installation Logs

COMP.

LOG OF BORING

BORING NO. MW-7 SHEET LOF 5

PROJECT NO. 70720.143 DATE START 08/3/93 DATE FINISH 08/28/93
DATE START 08/3/93 DATE FINISH 08/28/93
08/28/93
REMARKS
Boring advanced w/10-1/4" 00, 6-1/4" I
hollow stem auger.
y,
ét;
Water encountered @
~25' during drilling.

BORING NO. MW-7

APM'	<u>V</u>							LC)G	OF BORING	SHEET 2 OF 5
CLIEN USEP	T A Regi	on V								PROJECT Continental-Midland	PROJECT NO. 70720.143
	CT LO						NATES rveyed			ELEVATION (DATUM) TOTAL DEPT 400.12' relative 137 FEET	TH DATE START 08/3/93
SURF Along	ACE CO south	NDITIO fencel	NS ine nea	ar wate	er towe	er				LOGGED BY S. Mrkvicka	DATE FINISH 08/28/93
			AMPLIN		Γ	-	CHECK R. Su	(ED l	ВҮ	APPROVED BY J. Chitwood	
SANPLE	SAMPLE	SET 6 INCHES	2ND 8 INCHES	3RD 8 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	700		
	· ·		CORING		⊨ ≿	ļ	N. I	P.E	GRAPHIC	CLASSIFICATION OF MATERIAL	REMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	R0D	DEPTH	SAMPLE	GRA		
SPT	6	7	6	9	15	2.0	31 —			Sandy SILT; gray; stiff; low plasticity; wet; w/some clay (glacial till).	
	i						32 —				
		•					33 — 34 —				
SPT	7	13	8	9	17	1.5	35 —			SAND; brown, w/black laminations; loose; dry.	
	} }						36 — 37 —				
							38 —				•
SPT	8	7	38	70	108	1.8	39 — 40 —		777		
<i>3, ,</i>		'				0	41-	A		CLAY; gray-brown; stiff; low plasticity; moist; w/some sand.	
							42 -				
							44 -				
SPT	9	31	29	45	74	1.3	45 -		000	Sandy GRAVEL; light gray; very dense; dry; poorly graded; angular	
							47 -		000		
							48 -		000		
SPT	10	62	59	58	117	1.5	50 -				
							51 -				
							53 -	$\left\{ \right.$	000		
			,-				54 - 55 -		000	g g	emporary 8" ID steel
SPT	11	11	17	21	38	1.8	56 -	1		sand and clay.	asing driven to 58'. elow 55', boring
							57 -			i I	ontinued w/7-7/8" ricone bit using entonite mud as drilling
							58 - 59 -			i i	uid.
	<u></u>	1	<u> </u>	<u> </u>	1		<u> </u>	1_		<u> </u>	-

BORING NO. MW-7

APM.	<u>v</u>				_)(5	OF BORING	SHEET 3 OF 5
CLIEN	T A Regi	on V								PROJECT Continental-Midland	PROJECT NO. 70720.143
	CT LOC Forest				C	OORDII Not sur	VATES veyed			ELEVATION (DATUM) TOTAL 400.12' relative 137 F	DEPTH DATE START EET 08/3/93
	CE CO	fence	ine nea		er towe	r				LOGGED BY S. Mrkvicka	DATE FINISH 08/28/93
	~		AMPLIN S			٠	CHECK R. Su	(ED tera	BY	APPROVED BY J. Chitwood	
SANPLE TYPE	SAMPLE	SET 6 INCHES	2ND 8 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	FEET	TYPE	1.06		
			CORING		>	Ι			HIC	CLASSIFICATION OF MATERIAL	REMARKS
CORE S1ZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	800	DEPTH IN	SAMPLE	GRAPHIC		
SPT	12	44	71	65	136	0.0	61 —				
					i		62 —				
							63 —				
							64 —				
SPT	13	10	32	16	48	1.3	65			Silty CLAY; gray; hard; high plasticity; moist; trace sand (glacial till).	
							66 —			moist; trace sand (glacial till).	
							67				
				 			69				
SPT	14	9	24	45	69	1.2	70 –			Sandy SILT: gray: hard: moist: w/thin	
		 		ļ	İ		71 —	A		Sandy SILT; gray; hard; moist; w/thin black clay laminae @ ~ 40'	
							72 -				
							73 -				}
SPT	15	8	20	31	51	1.2	75 -				
J				"			76 –	A			
							77 -				
		ļ					78 -	1			
			20	27	7.0		79 - 80 -				
SPT	16	9	39	37	76	1.2	81 -	1		€ ~81', grading wet; poorly graded.	
							82 -				
							83 -	+			
							84 -	1			
SPT	17	15	28	44	72	1.2	85 -	1		Silty CLAY; gray; hard; high plasticity; moist; trace sand (glacial till).	Chala fire-the-
							86 -			SAND; gray medium dense; well graded;	Shale, limestone fragments in till.
							88 -	-		fine grained; wet.	
							89 -	-			
		1	1	1	1	1	1	1		1	1

BORING NO. MW-7 SHEET 4 OF 5

MA								L	JG	OF BORING	SH	HEET 4 OF 5
CLIEN	IT PA Regi	on V					 ,			PROJECT Continental-Midland		PROJECT NO. 70720.143
PROJE	CT LOC Forest	CATION			C	:00RDII Not sur	NATES			ELEVATION (DATUM) 400.12' relative	TOTAL DEPTH 137 FEET	DATE START 08/3/93
SURF	ACE CO	NOITIO	ONS line ne	ar wate	er towe	er				LOGGEO BY S. Mrkvicka		DATE FINISH 08/28/93
	, — —	S.	AMPLI	VG			CHECI R. Su			APPROVED J. Chitwoo		_
SAMPLE TYPE	SAMPLE	SET 8 INCHES	2ND 8 INCHES	3RD 6 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	907	v. cintroo		
	L		CORIN	$\overline{}$			N.	E T		CLASSIFICATION OF MATERI	٨١	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	ROD	DEPTH IN	SAMPLE	GRAPHIC	SEASSIFICATION OF MATERI		NEPIANNO
SPT	18	14	33	60	93	1.2	91 —			SANO; brown; very dense; poorly gra- fine grained; weak cementation; wet.	ided;	
							92 -		ک و ک	_		
							93 -		0000	GRAVEL; gray; very dense; well grad subangular wet; w/dark gray shale fragments.	eu,	
			ĺ				94 –	-	00000000000000000000000000000000000000			
SPT	19	95	97	100/5"	-	1.4	95 –		1000 1000 1000	·		
			}		<u>.</u>		96 –		000			
							97 –	1		SAND; brown; very dense; poorly grafine grained; weak cementation; wet	idea,	
							98 –	1				
] 		99 -			Sandy SILT; brown; hard; low plastic	itv:	
SPT	20	28	40	65	105	1.7	101 -			moist; trace gravel.		
							102 -					
	1						103 –	-		SILT; brown; hard; low plasticity; w/	some	
	1						104 -	-		gravel.	30ine	
SPT	21	11	17	19	36	2.0	105 -		-			
							108 -					
							107 -					
							109 -					
SPT	22	7	18	27	45	1.8	110 -	_	-			
J	"			-	.		111 -	1				
							112 -			Silty SAND; brown; loose; well grade trace gravel.	d;	
							113 -	1				
					Ì		114 -	1				
SPT	23	5	11	14	25	2.0	115 -		∭	SILT; brown; very stiff; low plasticit moist; w/some gravel.	y;	
							116 -					
							118 -					
					1		119 -	1				
1	1	1	1	1	1	1	1	1		II.	ı	

BORING NO. MW-7 SHEET 5 OF 5

* MA	V							LC)G	OF BORING	SH	EET 5 OF 5
CLIEN	T A Regi	on V								PROJECT Continental-Midland		PROJECT NO. 70720.143
		CATION , Illinoi			С	OORDII Not sur	NATES veyed			ELEVATION (DATUM) TO 400.12' relative 13	TAL DEPTH 7 FEET	DATE START 08/3/93
SURF A	CE CO	NDITI(NS ine nea	ar wate	er towe	er				LOGGED BY S. Mrkvicka		DATE FINISH 08/28/93
			AMPLIN		· · · · ·		CHECK R. Su			APPROVED BY J. Chitwood		· · · · · · · · · · · · · · · · · · ·
SANPLE TYPE	SAMPLE	SET 8 INCHES	2ND 8 INCHES	3RD 6 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	106	v. ciii(nood		
			CORING						12	CLASSIFICATION OF MATERIAL		REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	ROD	DEPTH IN	SAMPLE	GRAPHIC	SENSON TONTION OF THATEINAE		TIET TATING
SPT	24	160	=	-	-	0.4				Silty GRAVEL; loose; poorly graded; 1/8" to 1"; subangular; wet.		
			122'				121 —			to 1, subungula, wet.	411 5145	
							122 — 123 —			LIMESTONE; argillaceous; gray to light gray; finely crystalline; vugs < 20%, up to 0.1"; trace partings, up to 0.1".	groute	casing set and d to 122'.
				}			124 —		臣	0.1"; trace partings, up to 0.1".	continu	22', boring led w/NX double
							125 —			•	core bi	arrel w/diamond b otable water as
2 1/4"	,	10.0'	10.0'	0.0	100	0.0	 126 —				drilling	
., .	ľ	10,10					127 —				w/3-7, using c	122', boring reame /8" OD tricone bit otable water as fluid.
							128 —		藍		drilling	fluid.
							129 —					
						}	130 —					
			42.01				131 —		臣			
			132'	-			132 —	İ	臣			
							133 —		Ê	trace calcite and pyrite in vugs		
2 1/4"	2	5.0'	5.0'	1.7	100	3.4	134 — 135 —		臣			
							136 –		臣		}	
		<u> </u>	137'				137 –		藍			
	}						138 —	-			,	of boring @ 137'. level not
							139 —	-			record	led.
			}		}		140 -	{			Monito on 8/3	ring well installed 80/93.
							141	-				
			l				142 -	1				
							143 —	1				
							144 -	1				
							145					
ı							146 -					
							147 -					
							149 -					
	ļ	}	ļ	1	1		'''		1	J		

BORING NO. MW-8 SHEET 1 OF 2

W. A.	V							L)6 (OF BORING SHEET 1 OF 2
CLIEN	T A Regi	on V								PROJECT PROJECT NO. 70720,143
PROJE	CT LO	CATION	ł s		C	OORDI Not sur	NATES			ELEVATION (DATUM) TOTAL DEPTH DATE START 08/16/93
	ACE CO		ONS							LOGGED BY DATE FINISH D. Ingram 08/17/93
	T	S	AMPLIN				CHECI R. Su	KED :	BY	APPROVED BY J. Chitwood
SAMPLE	SAMPLE	SET 8 INCHES	2ND 8 INCHES	3RD 8 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	700	
	~		CORING ≿		-≿	1	Z		GRAPHIC	CLASSIFICATION OF MATERIAL REMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	Rac	ОЕРТН	SAMPLE	GRAI	
							1			Silty CLAY; gray to reddish-brown; stiff; high plasticity; moist w/some sand and gravel. Grading dark gray w/some hollow stem auger.
							2 -	{		cinders.
		i					3 –			
							4 –			
SPT	1	3	5	5	10	1.3	5 -			
				 			7 -			
							8 -	-		
							9 -	$\left\{ \right.$		trace sand; gravel grading out; trace root vesicles.
SPT	2	2	4	3	7	1.8	10 -			
							11			Grading gray.
		i					13 -	-		
\ \							14 -	-		
SPT	3	2	4	7	11	1.7	15			
							16 -	A		
					ļ		17 -			
							19 -	-		Water encountered @ ~1
SPT	4	2	7.	12	19	1.6	20 -			Grading very stiff; wet.
							21 -			
ļ							22 -			
							24 -	1		
SPT	5	5	8	10	18	1.8	25 -	-		
							26 -	1		
							27 -			
							28 -			
)]]	25			

BORING NO. MW-8

'O'M	V							LC)G	OF BORING	SHEET 2 OF 2
CLIEN	T 'A Regi	on V								PROJECT Continental-Midland	PROJECT NO. 70720.143
PROJE Park	CT LO	CATION , Illinoi:	<u> </u>			OORDI Not sur				ELEVATION (DATUM) TOTAL DEF 391.22' relative 57 FEET	TH DATE START 08/16/93
	CE CO grassy	NDITIO	ONS							LOGGED BY D. Ingram	DATE FINISH 08/17/93
			AMPL IN			>	CHECK R. Su	KED Itera	BY	APPROVED BY J. Chitwood	
SAMPLE TYPE	SAMPLE	SET 8 INCHES	2ND 8 INCHES	3RD 8 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	100		
		· ·	CORING -		≻	I	Z		GRAPHIC	CLASSIFICATION OF MATERIAL	REMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	RGD	ОЕРТН	SAMPLE	GRA		
SPT	6	2	5	8	13	1.9	31 —				
							32 —				
				:			33 —				
							34 —				
SPT	7	9	14	18	32	2.0	35 —				
							36 — 37 —	A			
							38 -				
							39 —	-		Silty SAND; gray; medium dense; fine to medium grained; subrounded to rounded; wet.	
SPT	8	5	10	11	21	1.6	40 –		-		
							41 -	L		Clavey SILT: gray stiff; low plasticity	
							42 -			Clayey SILT; gray; stiff; low plasticity; moist; trace sand.	
							44 -				
SPT	9	8	10	30	40	0.9	45 –		-	Sandy SILT; gray; hard; moist; trace gravel.	
							46 -	A			
							47 -				
							49 -	-		Some clay grades in.	
SPT	10	8	48	28	76	1.2	50 -		-		
							51 -			Silty SAND; gray; coarse grained; very dense; well graded; w/some gravel.	
							52 53			. Gense, well graded, w/sollie gravel.	
							54 -		Ш		
SPT	11	11	12	23	35	1.5	55 -	_	-	SAND; light brown; dense; poorly graded; fine grained; moist.	
							56			1	Bottom of boring @ 57'.
		-	57'	 	 	-	57 -				Water level not recorded.
							59 -				Boring backfilled w/cement-bentonite grout to ground surface on 8/17/93.

BORING NO. MW-8A SHEET 1 OF 5

PH.	V							LC)G	OF BORING	SH	HEET 1 OF 5
CLIEN	T A Regi	an V								PROJECT Continental-Midland		PROJECT NO. 70720.143
PROJE	CT LO	CATION	l s		C	OORDII	NATES veyed			ELEVATION (DATUM) TOTAL DE 391.22 (relative) 131.3 FE	PTH ET	DATE START 08/17/93
	CE CO		ONS		-					LOGGED BY D. Ingram		DATE FINISH 08/23/93
		S	AMPLIN				CHECK R. Su	(ED tera	ВУ	APPROVED BY J. Chitwood		
SANPLE TYPE	SAMPLE	SET 8 INCHES	2ND 6 INCHES	3RD 6 INCHES	VALUE	SANPLE RECOVERY	FEET	TYPE	106			
		· · · · · · · · · · · · · · · · · · ·	CORING				Z		HIC	CLASSIFICATION OF MATERIAL		REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	RaD	ОЕРТН	SAMPLE	GRAPHIC			
							1 —			Undifferentiated overburden (See log of boring for MW-8).	Boring w/10-1/	advanced '4" OD, 6-1/4" ID stem auger.
							2 —				nonow s	stem auger.
				<u> </u>			3					
							4 –		1	•		
							5 —		微			
			}				6 -					
	}			:			8-					
							9	-				
							10 —	-	2,2			
			1				11 -	-				
							12	1	4,4			
							13 —				i i	
	ł						14 -					
							16 -					
							17 –	1				
							18 –	$\left\{ \right.$				
							19 -	1			}	
							20 -	1				
							21 -					
							23 -					
							24 -	-				
ſ							25 -	-				
							26 -	1				
							27 -	1				
							28 -	1				
							29 -	1				

N. A.		•						LC)G (F BORING		BORIN		. MW-8A EET 2 OF 5
CLIEN USEP	T A Regi	on V								PROJECT Continental-Midland				PROJECT NO. 70720.143
ROJE	CT LOC Forest	ATION					NATES veyed			ELEVATION 391.22' (rela	(DATUM)	TOTAL DE	PTH ET	DATE START 08/17/93
	CE CO grassy		ONS							LOGGED BY D. Ingram	,			OATE FINISH 08/23/93
			AMPLIN				CHECK R. Su	(ED	8Y		APPROVED			
SAMPLE	SAMPLE	SET 8 INCHES	SND SND SND SND SND SND SND SND SND SND	3RD 6 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	700		.			
SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	ROD	DEPTH IN	SAMPLE	GRAPHIC	CLASSIFICATION	OF MATER	IAL		REMARKS
SPT	3	10	9	10	19	1.3	31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 — 41 — 42 — 43 — 45 — 46 — 47 — 48 — 50 — 51 — 52 — 54 — 55 — 54 — 55 —			Silty SAND; gray; medium coarse grained; subround wet; w/some clay. Clayey SILT; gray to dislow plasticity; moist; w/somedium dense; subround wet; trace sand. SILT; dark brown; dense moist; trace sand and grained; fine grained; most graded; fine gr	erk brown; some sand. In to dark ged to subare; low plasting ravel. very dense pist.	tiff; ray; ngular; city;	Below continu	rary 8" steel driven to 43'. 43' boring led w/7 7/8" er tricone bit usi ite mud as drillny
SPT	4	37	47	51	98	1.5	55 56 57 58			Grading wet, trace grav	rel.			

BORING NO. MW-8A

V							LC)G	OF BORING	SHEET 3 OF 5
T A Regi	on V								PROJECT Continental-Midland	PROJECT NO. 70720.143
CT LO	CATION	Į s		C	OORDI Not sui	NATES	 i	••••	ELEVATION (DATUM) TOTAL DEF 391.22' (relative) 131.3 FEE	OATE START 08/17/93
		ONS							LOGGED BY D. Ingram	DATE FINISH 08/23/93
-	S								APPROVED BY	
SAMPLE	SET 6 INCHES	2ND 6 INCHES	3R0 8 INCHES	N VALUE	SAMPLE RECOVER		\Box	106		
 				_>				HIC	CLASSIFICATION OF MATERIAL	REMARKS
RUN NUMBER					Rab	DEPTH	SAMP	GRAF		
5	20	40	61	101	1.4	61 -			Gravel grades but: occasional sand	
			j			62 -			lamination grades in.	
			,			63 –				
			,			64 -	-			
6	37	67	86	153	1.2	65 –				
				<u> </u>		ļ	A			
7	46	67	_	_	1.0	70 -	_		Trace silt grades in.	
,						71-	A		·	
						72 -	$\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
						73 -	1			
		ļ				1	1		Silt grades out.	
8	50	67	-	-	1,1					
						1	-		:	
						78 -	-			
			!			79 -	$\frac{1}{2}$			
9	21	37	41	78	0.8	80 -	+	-		
						1				
						84 -				
10	41	67	100	167	0.9	85 -	_	_		
						86 -	1			
						87 -		N	1	
						1	İ	00	Sandy GRAVEL; dark gray; dense; well	
1					ł	89 -	7	0.0		
	CT LOG Forest ACE CO grassy NOW 5	PA Region V CT LOCATION Forest, Illinoi ACE CONDITIO Grassy. S 138 NNW S 100 100 100 100 100 100 100 100 100 1	PA Region V CT LOCATION Forest, Illinois ACE CONDITIONS grassy. SAMPLIN PA Region V CT LOCATION Forest, Illinois ACE CONDITIONS grassy. SAMPLING SHOW SHOW SHOW SHOW SHOW SHOW SHOW SHOW	PA Region V CT LOCATION Forest, Illinois ACE CONDITIONS grassy. SAMPLING SINGHER CORING NUMBER CORING BIONE CORING AND CORING CORING AND CORING CORING AND CORING CORI	A Region V CT LOCATION Forest, Illinois ACE CONDITIONS grassy. SAMPLING CORING H19N3 1 20 40 61 101 1.4 CORING AND SWAR 1 101 1.4 CORING 1 101 1.4 C	A Region V ICT LOCATION Forest, Illinois SAMPLING STATE CONDITIONS Grassy. SAMPLING CHECK R. St.	CT LOCATION Forest, Illinois SAMPLING SAMPLIN	TOT LOCATION Forest, Illinois Not surveyed N	A Region V	

BORING NO. MW-8A

E A								LC	G C	F BORING		BORING	SHEET 4 OF 5
CLIEN	T A Regi	on V				-				PROJECT Continental-Midland			PROJECT NO. 70720.143
ROJE Park	CT LOC Forest	CATION Illinoi:	I S	_	C	OORDII	NATES veyed		-	ELEVATION 391.22' (rela	(DATUM)	TOTAL DEP	TH DATE START 08/17/93
SURF		NDITIO			<u>l</u> _					LOGGED BY D. Ingram			DATE FINISH 08/23/93
		S	AMPLIN				CHECK R. Su	(ED 1	3Y	, or angree	APPROVED J. Chitwoo	BY	
SAMPLE	SAMPLE	SET 8 INCHES	2ND 8 INCHES	3RD 6 INCHES	VALUE	SAMPLE RECOVERY	FEET :	TYPE	F 00		U. CHILAGO		
			CORING						呈	CLASSIFICATION (OF MATERI	AL	REMARKS
CORE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	R00	DEPTH IN	SAMPLE	GRAPHIC				
TT	11	26	21	16	37	1.0	91 —		000				
							92 —			Silty SAND; brown; mediu	m dense; po	orly	
							93 —			graded; fine grained; rou	indea; wet.		
			'				94 —						
SPT	12	31	29	34	63	1.7	95 —						
							96 -						
							97 —			•			
				}		1	98 – 99 –						
SPT	13	38	38	38	76	1.7	100 -						
or i	13	30	30	30	1,0	"."	101 -						
							102						
	<u> </u> 			į			103 -						
							104 -						
SPT	14	28	30	39	69	1.6	105 -						
							106 -						
							108 -					}	
							109 -	-					
SPT	15	26	26	26	52	0.9	110 -			Gravelly SILT; grayish-t	orown; hard;	wet;	
							111 -	A		trace sand.			
							112 -						
							113 -						
		ļ	115'	ļ	ļ	-	115 -			TWESTONS	a. flat i		4" PVC casing set and
1/4"	,	3.2	3.2'	0.	100	0	116 -	-	題	LIMESTONE; argillaceou gray; thin to medium bed crystalline; yugs <25%,	dded: finelv	10	grouted to 115".
							117 -		題	crystalline; vugs <25%, moderately weathered;	trace pyrite	ĺď	Below 115' boring continued w/NX double core barrel w/ diamone
	ļ	<u> </u>	118.2		 	_	118 -	\dagger	題			l t	oit and reamed w/3 7/ diameter tricone bit us
			1				119 -	1	開				ootable water as drillir luid.

BORING NO. MW-8A SHEET 5 OF 5

M										ניוטם ול	.110			31	1EE 1 5 OF 5
CLIEN	T A Regi	on V								PROJE Conti	CT nental-Midland				PROJECT NO. 70720.143
Park	CT LOC Forest	CATION Illinoi	l s		С	:00RDII Not sur	NATES veyed				ELEVATION (391.22' (rela	DATUM) tive)	TOTAL D 131.3 F	EPTH EET	DATE START 08/17/93
	CE CO grassy		ONS							į	.OGGED BY D. Ingram				DATE FINISH 08/23/93
		S	AMPLIN			1	CHECK	ED	BY Y			APPROVED	BY		
SAMPLE TYPE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	FEET 'S	TYPE				J. Chitwo	od		
			CORING						101	CI 459	SIFICATION O	TE MATER	TAI	-	REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	R00	DEPTH IN	SAMPLE	GRAPHIC LOG	CEAGO	11 100 11014	A MATEN.			TEPIAIII.
2 1/4"	2	6.1'	6.1'	0'	100	0	121 — 122 — 123 —			6" vertica pyrite @ ^	I fracture lined 121.1'.	w/ calcite	and		
			124.3				124 —								
							125 — 126 — 127 —								
2 1/4"	3	7.0'	7.0'	1.8'	100	25.7	128 —	}		Pyrite-fill	ed vertical frac	ctures @ 129	9.5'		
			131.3'		! 		130 —						•		
							132 —							Botton	of boring @ 131.3
			1				133 —							Water record	level not led.
							134 — 135 —							Monito on 8/2	ring well installed 24/93.
							136								
		ļ	Ì				137 —	Į.							
							138 —	1							
ı							139 —	ì							
							140 -								
	}						141 —	1							
							142 —								
! !							143 —	-							
							144 — 145 —	i i							
							146 -	1		ı					
							147 -	-							
							148 -	-							
						1	149 -	$\left\{ \right.$		1					

BORING NO. MW-9 SHEET LOF 3

TO M	V							L	OG (SHEET 1 OF 3
CLIEN	IT PA Regi	on V								PROJECT Continental-Midland	PROJECT NO. 70720.143
PROJE	CT LO	CATION	1 s		C	OORDI Not su	NATES			ELEVATION (DATUM) TOTAL DEPTH 397.65' (relative) 77 FEET	DATE START 08/14/93
SURF	ACE CO	NDITION	DNS	the s						LOGGED BY D. Ingram	DATE FINISH 08/15/93
	Γ	S	AMPLIN	G			CHECK R. Su	(ED	ВҮ	APPROVED BY J. Chitwood	
SAMPLE TYPE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	700		
CORE S1ZE	RUN	RUN LENGTH	RUN RECOVERY DATAO	RECOVERY	PERCENT RECOVERY	RaD	DEPTH IN	SAMPLE	GRAPHIC	CLASSIFICATION OF MATERIAL	REMARKS
SPT	1	4	11	16	27	1.9	1 — 2 — 3 — 4 — 5 —			plasticity; trace grave; and occasional w/10-	g advanced 1/4" OD, 6-1/4" IC v stem auger.
SPT	2	16	17	22	39	1.8	6 — 7 — 8 — 9 — 10 — 11 — 12 —			Grading moist.	
SPT	3	3	7	8	15	2.0	13 — 14 — 15 — 16 — 17 —			Grading reddish-brown; stiff; high plasticity.	
SPT	4	8	14	14	28	2.0	18 - 19 - 20 - 21 -			Grading brown.	
SPT	5	7	8	17	25	1.8	22 23 24 25 26			Trace sand grades in.	
							26 - 27 - 28 - 29 -			Silty SAND; reddish-brown; poorly graded; fine grained; subrounded; moist.	

BORING NO. MW-9 SHEET 2 OF 3

M									,	UF BUR	1110		-	SHEET 2 OF 3
CLIEN	IT PA Regi	on V								PROJ Con	ECT tinental-Midland	}		PROJECT NO. 70720.143
PROJE	CT LO	CATION	1 s			COORDII	NATES				ELEVATION 397.65' (rel	(DATUM) ative)	TOTAL DEPTH	DATE START 08/14/93
	ACE CO			the s	outh						LOGGED BY D. Ingram			DATE FINISH 08/15/93
	<u></u>	S	AMPLIN	IG			CHECK R. Su		BY YE			APPROVED J. Chitwo		
SAMPLE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	VALUE	SANPLE RECOVERY	FEET	TYPE	700			T V. CIIILWO	50	
	T		CORING		_ ≿	T	Z. I		GRAPHIC	CLAS	SIFICATION	OF MATER	IAL	REMARKS
CORE SIZE	RUN NUMBER	RUN	RECOVERY	ROD RECOVERY	PERCENT RECOVERY		ОЕРТН	SAMPLE	GRA					
SPT	7	28	70	94	164	1.9	31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 —			coarse g	very dense; wei grained; dry. avel grades in.	I graded; fir	e to	
SPT	8	18	25	32	57	2.0	39 — 40 — 41 — 42 —			SAND: lic	moist, gravel gr ght brown; very fine grained; mo	dense: poor		
SPT	9	9	18	27	45	2.0	43 44 45 46 47 48							
SPT	10	4	19	27	46	2.0	49 50 51 52 53							
SPT	11	20	22	29	51	1.7	54 55 56 57 58							

BORING NO. MW-9 SHEET 3 OF 3

.O. M	V							L(OG_	OF BORIN	IG			SH	EET 3 OF 3
USEP	T 'A Regi	on V	_		_					PROJECT Continer	ntal-Midland			_	PROJECT NO. 70720.143
Park	CT LOC Forest	, Illinoi	s			OORDI Not sui					LEVATION (397.65' (rela	DATUM) stive)	TOTAL D	EPTH T	DATE START 08/14/93
	ACE CO sy: sligi			the s	outh						GED BY Ingram				DATE FINISH 08/15/93
			AMPLIN		I		CHECK R. Su	KED Itera	BY			APPROVED	BY		
SAMPLE	SAMPLE NUMBER	SET 6 INCHES	S INCHES	3RD 6 INCHES	N	SAMPLE RECOVERY	FEET	TYPE	GRAPHIC LOG						
	Γ		CORING		<u></u> ≻	γ. –	Z.	LE J	H	CLASSIF	FICATION C	F MATER	IAL		REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	R00 RECOVERY	PERCENT RECOVERY	RoD	DEPTH IN	SAMPLE	GRAF						
PT	12	8	11	34	45	1.7	61								
							62 -								
							63 ~	1							
							64 —	-		•				Ì	
PT	13	12	25	42	67	1.8	65		1						
							66 -	A							
							67 —								
							68 -	1							
							69 -			Grading wet.				Water	encountered @
PT	14	9	17	20	37	2.0	70 -							~69.5	during drilling.
				}			72 -			Silty SAND; medium grain subrounded; grades out (grayish-brov ned; well grad	in; dense; i led; rounde	fine to d to		
			}	}			73 –	1		grades out (wet; w/some 2 71.8'.	gravel. G	ravei		
						Ì	74 -	-							
SPT	15	3	7	9	16	1.8	75 –		-						
			77'				76 –	A							
	 			 		1	77 -		Till Till					Bottom	of boring & 77
		}					78 - 79 -							Water I record	evel not ed.
							80 -							Boring to surf	backfilled w/gr ace on 8/27/93
							81 -]		1					
							82 -	1							
				ĺ			83 -	d							
							84 -	1							
							85 -								
							86 -	1							
							87 -	1							
							89 ~	1							
	1	1		1	1		1	1		}				1	

ENCE AND TECHNOLOGY CORP.

LOG OF BORING

BORING NO. MW-9A

WP4								LC)G (OF BORING	S	HEET 1 OF 5
CLIENT USEPA	Regio	on V	_			<u> </u>		_		PROJECT Continental-Midland	_	PROJECT NO. 70720.143
ROJEC Park F	T LOC orest,	ATION Illinoi	j 5		С	OORDI Not sur	NATES veyed			ELEVATION (DATUM) TOTAL 397.65' (relative) 135 F6	DEPTH ET	DATE START 08/25/93
SURFAC	E CO	NDITIO	NS covere	d.						LOGGED BY D. Ingram		DATE FINISH 08/28/93
——————————————————————————————————————			AMPLIN				CHECK R. Su	(ED)	ВҮ	APPROVED BY J. Chitwood		· · · · · · · · · · · · · · · · · · ·
SAMPLE	SANPLE	SET 8 INCHES	2ND 8 INCHES	3RD 6 INCHES	N VALUE	SANPLE RECOVERY	FEET	TYPE	106	To dimension		
			CORING				Z.		S	CLASSIFICATION OF MATERIAL	j	REMARKS
STZE	NUMBER	RUN LENGTH	RUN RECOVERY	RGD RECOVERY	PERCENT RECOVERY	R00	DEPTH IN	SAMPLE	GRAPHIC			
		-					1			Undifferentiated overpurden (See log of boring for MW-9).	Boring w/10-1 hollow	agvanced /4" OD, 6-1/4" ID stem auger to 7".
					i i		2 — 3 —				1	temporary steel to 8.5'.
							4 —				Below w/7 7/ tricons	7' boring continue '8" diameter e bit using potable as drillng fluid.
							5 6				water	as drillng fluid.
					<u>.</u>		7 -					
							9					
							10 —					
							11 -	1				
ļ							12 -]				
			i				14 -	{				
							15 —	-				
			<u>.</u>				16 -					
			!				18 -	-				
							19 –	1				
							20 -	1				
		Ì					22 -	-				
							23 -					
							24 -	1				
							25 - 26 -					
							27 -	-				
							28 -	\dashv				
							29 -	1	16,6			

BORING NO. MW-9A

W.	<u>V</u>)G —-	OF BORING SHEET 2 OF 5
USER	IT PA Regi	on V								PROJECT NO. 70720.143
ROJE	CT LO	CATION	l s		C	OORDII Not sur	NATES veyed			ELEVATION (DATUM) TOTAL DEPTH DATE START 397.65' (relative) 135 FEET 08/25/93
SURF. Flat,	ACE CO	NDITI(ONS covere	d						LOGGED BY DATE FINISH D. Ingram 08/28/93
			AMPLIN			>	CHECK R. Su	(ED Itera	ВҮ	APPROVED BY J. Chitwood
SANPLE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	N VALUE	SAMPLE RECOVERY	FEET	TYPE	907	
			CORING			r	Z		HIC	CLASSIFICATION OF MATERIAL REMARKS
CORE SIZE	RUN NUMBER	RUN	RECOVERY	ROD RECOVERY	PERCENT RECOVERY	ROD	DEPTH IN	SAMPLE	GRAPHIC	
							31 —			
							32 —	-	eie	
							33 —	{		
]				34 —	1		
		•					35 — 36 —			
							37 -			
							38			
							39 –	}	2	
							40 –	$\frac{1}{2}$		
							41-	1		
							42 –	1		
							43 -			
							45 -			
							46 -			
							47 -	-		
							48 -	1	100	
							49 -	1	N.	
							50 -			
							51 - 52 -			
							53 -	-		
							54 -	-		
							55 -	-		4
							56 -	1		
							57 -	+		4
							58 -	1		
	1						59 -	1	1	4

BORING NO. MW-9A

O.A.	V								OG (OF BORING		BONING	SHEET 3 OF 5
CLIEN	T A Regi	on V								PROJECT Continental-Midlan	d		PROJECT NO. 70720.143
ROJE	CT LO	CATION , Illinoi					NATES rveyed			ELEVATION 397.65' (re	(DATUM)	TOTAL DEPTH	DATE START 08/25/93
		NDITI	ONS covere	d						LOGGED BY D. Ingram			DATE FINISH 08/28/93
		S	AMPLIN				CHECK R. Su	KED	BY		APPROVE		00,20,00
SAMPLE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	380 B INCHES	N	SANPLE RECOVERY	FEET	TYPE		 	J. Chitwo	od	
ш ш	~ #		CORING		E ST		DEPTH IN	SAMPLE 1	GRAPHIC LOG	CLASSIFICATION	OF MATER	IAL	REMARKS
SI Z	RUM NUMBER	RUN	RUN RECOV ERY	ROD RECOVERY	PERCENT RECOVERY	8	DEP	SA	GR				
]				61 —						
			<u> </u>				62 -						
]				63 ~						
							64		2,2	•			
					(66 -						
							67 —		2,2				
							68 -						
						Ì	69 —	}	2,2				
							70 -		4,4				
] [}			71 —		2,2			·	
			-				72 —	1					
	}	}		}			73 –						
	,						74 -						
SPT	1	26	39	41	80	1.4	75 – 76 –			SAND; grayish brown; v graded; fine grained; w	ery dense; ¡ et; trace sil	poorly t.	
							77 -						
	{						78 –						
	}						79 –	-		Silty SAND; grayish browell graded; fine grains	own; medium	dense;	
SPT	2	7	12	18	30	1.6	80 -	_	-	Acti graded, the grant	.u, rounded,		
•							81 -	1					
							82 -						
							83 -	1					
							84 -	1	1111	SAND; yellowish-brown	very dense	2;	
SPT	3	37	49	58	107	1.3	85 -			poorly graded; fine to rounded; wet; trace sil	niedium graii t.	160'	
							86 -						
							87 -						
							88 -						
	1	1	1	1	1	1	109-	1	1			ſ	

BORING NO. MW-9A SHEET 4 OF 5

PA,	V							LC	G (OF BORING		EET 4 OF 5
USEF	T PA Regi	on V								PROJECT Continental-Midland		PROJECT NO. 70720.143
		CATION , Illinoi		_			NATES veyed			ELEVATION (DATUM) TOTAL DE 397.65' (relative) 135 FEE		DATE START 08/25/93
		Weed-	ONS covere	d.						LOGGED BY D. Ingram		DATE FINISH 08/28/93
			AMPLIN			<u> </u>	CHECK R. Su			APPROVED BY J. Chitwood		
SAMPLE	SAMPLE	SET 6 INCHES	2ND 6 INCHES	3RD 6 INCHES	VALUE	SAMPLE RECOVERY	FEET	TYPE	1.06			
	~		CORING ≿		⊢≿	Ι	Z T		GRAPHIC	CLASSIFICATION OF MATERIAL		REMARKS
CORE S12E	RUN	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	R00	ОЕРТН	SAMPLE	GRA			
SPT	4	17	31	47	78	1,4	91			Sandy SILT; gray; hard; low plasticity;		
						ļ	92			moist. SAND; dark gray; very dense; poorly graded; fine to medium grained; rounded; wet.		
SPT	5	35	38	35	73	1.3	94 — 95 — 96 —		0000	Gravelly SAND; tan to gray, very dense; well graded; fine to medium grained; rounded to subangular; wet; trace clay and silt.		
							97 — 98 —			SAND; tan to gray; dense; poorly graded; fine grained; rounded; wet; w/some silt.		
SPT	6	30	42	80	122	1.3	100 — 101 — 102 —			Grading very dense.		
SPT	7	31	41	54	95	1.1	103 — 104 — 105 — 106 —			Silt grades to trace.		
							107 —			Grading to fine to medium grained.		
SPT	8	16	30	34	64	1.2	111 —			SILT; gray to dark gray; very hard; low plasticity; moist trace sand.	E.	
SPT	9	17	19	25	44	0.6	113	1		Gravelly SILT; gray; hard; high plasticity;		
			117.5'				116 —			moist; w/some sand.		
							118 -			LIMESTONE; argillaceous; gray; laminated; trace vugs, pinpoint to 3/8"; fresh.	4" diag	meter Sch 40 P\ set and groute 5'.

BORING NO. MW-9A SHEET 5 OF 5

PH	V)G (OF BORING	_	SH	EET 5 OF 5
CLIEN	T A Regi	on V								PROJECT Continental-Midland			PROJECT NO. 70720.143
PROJE	CT LO	CATION	۱ s		C	OORDI Not su	NATES rveyed	 		ELEVATION (DATUM) 397.65' (relative)	TOTAL DE 135 FEE	PTH T	DATE START 08/25/93
		NDITION	ONS covere	d.						LOGGED BY D. Ingram	<u> </u>		DATE FINISH 08/28/93
		S	AMPLIN	IG	 I		CHECK R. Su	KED	ВҮ	APPROVED J. Chitwoo	BY		1 23,23,00
SANPLE TYPE	SAMPLE NUMBER	SET 8 INCHES	2ND 6 INCHES	3RD 8 INCHES	VALUE	SAMPLE RECOVERY	FEET ?	TYPE	٦٥٥	J. Chitwoo			
			CORING		l		L Z		10 [CLASSIFICATION OF MATERI	A.1		REMARKS
CORE SIZE	RUN NUMBER	RUN LENGTH	RUN RECOVERY	ROD RECOVERY	PERCENT RECOVERY	ROD	DEPTH IN	SAMPLE	GRAPHIC	CEASON TOATION OF MATERI	1		NEMANNO
		5.51	İ				121 —			~ 70° fracture @ 120.2°.		Below 11	l8.5° boring ed w/NX double
2 1/8"	1	5.5'	5.1	0,	94	0	122 -	1	蛊		1	core ba	rreiw/diamond
							123 —	-	H			as drillir reamed	p potable watering fluid, and then w/3 7/8" OD bit to 135' using
					 		124 —	-			i i	potable fluid.	water as drilling
		-	125'				125 —			·			
							126 —	-					
							127 -	1					
							128 -]			ĺ		
2 1/8"	2	10'	10'	2.9	100	29	129 -						
			}				131 -		窟				
							132 -	-					
					j		133 -]		
							134 -		盘				
		 	135'				135 -	1				Bottom	of boring @ 135'.
							136 - 137 -	1					evel @ 69.2" on 3 at completion o
							138 -					Monitor	ing well installed
						ŀ	139 -	-			}	011 072	6/93.
							140 -	1					
							141 -						
							142 -				{		
							144 -						
							145 -	-					
ı İ							146 -	-			:		
							147 -	-					
ĺ							148 -						
							149 -	1					

PIEZOMETER / WELL INSTALLATION LOG

NO. MW-7

CLIENT USEPA Region V			PROJECT Continental-Midland			
PROJECT LOCATION Park Forest, Illinois	COORDINATES Not surveyed		TOP OF RISER ELEVATION (DATUM) 402.41' (relative)	DATE 8/30/93		
STRATUM MONITORED Limestone			LOGGED BY J. Chitwood			
CHECKED BY R. Sutera		1	IOVED BY			

METHOD OF INSTALLATION:

Boring drilled to completion; set riser pipe and screen; placed filter and seal. Grouted to 2' below ground surface. Set above-ground protective steel casing. Concrete surface seal placed 6" above ground surface.

REMARKS:

Well pumped dry during development.

NO. MW-8

· · · ·			_
CLIENT		PROJECT	PROJECT NO.
USEPA Region V		Continental-Midland	70720.143
PROJECT LOCATION	COORDINATES	TOP OF RISER ELEVATIO	·- ·
Park Forest Illinois	Not surveyed	393.31' (relative)	l 8/24/93

STRATUM MONITORED LOGGED BY
Limestone D. Ingram

CHECKED BY
R. Sutera
APPROVED BY
J. Chitwood

METHOD OF INSTALLATION:

Boring drilled to completion; set riser pipe and screen; placed filter and seal. Grouted to 2' below ground surface. Set above ground proctective steel casing. Concrete surface seal placed 6" above ground surface.

REMARKS:

Well pumped dry during development.

PIEZOMETER / WELL INSTALLATION LOG

NO. MW-9

CLIENT USEPA Region V		PROJE Conti	CT nental-Midland	PROJECT NO. 70720.143
PROJECT LOCATION Park Forest, Illinois	COORDINATES Not surveyed		TOP OF RISER ELEVATION (DATUM) 400.00' (relative)	DATE 8/30/93
STRATUM MONITORED Limestone			LOGGED BY J. Chitwood	
CHECKED BY R. Sutera		1	OVED BY	

METHOD OF INSTALLATION:

Boring drilled to completion. Set riser pipe and screen. Placed filter and seal. Grouted to 2' below ground surface. Set above ground proctective steel casing. Placed concrete surface seal to 6" above ground surface.

REMARKS:

55 gallons of water pumped from well during development.